A clinical guideline for the management of children presenting with acute breathing difficulty
Authors

Dr Monica Lakhanpaul MBBS MRCP MRCPCH
Research Fellow, Academic Division of Child Health,
School of Human Development, University of Nottingham,
University Hospital, Nottingham NG7 2UH

Professor Terence Stephenson, B Sc BM DM BCh FRCP FRCPCH,
Professor of Child Health and Honorary Consultant Paediatrician,
Academic Division of Child Health
University of Nottingham,
University Hospital, Nottingham NG7 2UH

Dr Roderick MacFaul, MB ChB FRCP FRCPCH DCH
Consultant Paediatrician
Pinderfields General Hospital
Aberford Road, Wakefield WF1 4DG

Dr Ursula Werneke, MD MSc MRCPsych
Specialist Registrar
Maudsley Hospital
London SE5 8AZ

Correspondance to:
Dr M. Lakhanpaul at address provided above or
E-mail address monica.lakhanpaul@nottingham.ac.uk
Conflict of interest: none
Acknowledgements

Funding: Children Nationwide Medical Research Fund

Additional members of the guideline development group based at University Hospital Nottingham:

Miss L Williams, Accident and Emergency Consultant
Dr S Smith, Paediatric Consultant
Dr H Vyas, Paediatric Intensive Care Consultant
Dr J Norwood, Public Health Consultant
Ms Sue Pearce, Paediatric Accident and Emergency Sister
Ms Paula Lorgelly, Lecturer in the University Department of Health Economics
Mrs Bea Brunton, patient representative
Miss Philippa Eccleston, Nurse researcher
Dr Dermot Ryan, Primary Care representative, member of the General Practice Airways Group.

We would also like to acknowledge the advice provided by Dr Kate Armon, Specialist Paediatric Registrar.

The guideline development group acknowledges the time and effort of all the Delphi Panel members:

Dr A S Ahuja, Paediatric Consultant, Royal Albert Edward Infirmary, Wigan
Dr J Alexander, Paediatric Intensive Care Consultant, North Staffordshire Hospital
Carolyn Simpson, Paediatric Sister, Queens Medical Centre, Nottingham
Sue Pearce, Sister in Paediatric A&E, Queens Medical Centre, Nottingham
Mr R Bailey, A&E Consultant, Chesterfield and North Derbyshire Royal Hospital
Dr D Barker, Paediatric Consultant, St Mary's Hospital, Portsmouth
Dr H Baumer, Paediatric Consultant, Derriford Hospital, Plymouth
Dr J Bhatt, Paediatric Specialist Registrar, Sheffield
Mr T Beattie, A&E Consultant, Hospital for sick kids, Edinburgh
Dr E Carter, Consultant Paediatrician, Leicester Royal Infirmary
Dr G Collins, Paediatric Consultant, Chesterfield and North Derbyshire Royal Hospital
Dr F Davies, A&E Consultant, Royal London Hospital, London
Dr H Dixon, Paediatric Consultant, Hinchinbrooke Hospital, Huntingdon
Dr R Dinwiddie, Consultant Paediatrician, Great Ormond Street Hospital
Dr T Dorman, Anaesthetic Consultant, Sheffield Children's Hospital
Dr S Edees, Consultant Paediatrician, Royal Berkshire Hospital
Dr M L Everard, Paediatric Consultant, Sheffield Children's Hospital
Mr K Gibbin, ENT Consultant, University Hospital, Nottingham
Dr R Hawkes, Paediatric SHO, University Hospital, Nottingham
Dr M Hewitt, Paediatric Consultant, University Hospital, Nottingham
Dr D Hughes, A&E Consultant, Barnsley Hospital, Barnsley
Dr A Jaffe, Paediatric Research Fellow, Royal Brompton Hospital, London
Dr D Johnston, Paediatric Consultant, University Hospital, Nottingham
Dr H Marcovitch, Paediatric Consultant, Horton General Hospital, Banbury
Mr J McGlashan, Senior Lecturer in ENT, University Hospital, Nottingham
Dr M Mckean, Specialist Paediatric Registrar, Leicester Royal Infirmary
Dr S McKenzie, Paediatric Respiratory Consultant, Royal London Hospital
Dr I Narang, Paediatric Research Fellow, Royal Brompton Hospital, London
Jean Nixon, A&E Nurse, Peterborough
Dr V Nobel, Paediatric Consultant, King's Mill Centre, Mansfield
Dr U Prabhu, Paediatric Consultant, Fairfield General Hospital, Bury
Dr M Quinn, Paediatric Consultant, Royal Devon and Exeter Hospital
Dr F A I Riordan, Paediatric Consultant, Birmingham Heartlands Hospital, Birmingham
Dr N Ruggins, Paediatric Consultant, Derbyshire Children's Hospital, Derby
Professor N Rutter, Paediatric Professor, University Hospital, Nottingham
Dr G A Savill, Paediatric Consultant, Airedale General Hospital, Keighley
Dr D Sharkey, Paediatric SHO, University Hospital, Nottingham
Dr K Shyamanur, Paediatric Consultant, Doncaster
Dr A Smyth, Paediatric Respiratory Consultant, Nottingham City Hospital
Dr J Stroobant, Paediatric Consultant, University Hospital, Lewisham
Dr C L Sullivan, Paediatric Consultant, Singleton Hospital, Swansea
Erica Szondy, Senior Paediatric Nurse, Queens Medical Centre, Nottingham
Dr A Thomson, Paediatric Consultant, John Radcliffe Hospital, Oxford
Dr A P J Thomson, Paediatric Consultant, Mid-Cheshire Hospital NHS Trust
Dr D Thomas, Paediatric Intensive Care Consultant, University Hospital, Nottingham
Dr F Thompson, Paediatric Consultant, Northampton General Hospital
Dr J R Vyas, Paediatric Respiratory Consultant, Booth Hall Hospital, Manchester
Dr M Webb, Paediatric Consultant, Gloucestershire Royal Hospital
Dr P H Weller, Paediatric Respiratory Consultant City Hospital, Dudley, Birmingham
Dr L Walton, Paediatric SHO, University Hospital, Nottingham

The practical help by Jeanette-Taylor Meek, Gillian Wilson, Sue Waring and Maureen Sisson is also acknowledged.
Contents

Introduction 7
Aim of the guideline 8
Scope of the guideline 9
Guideline limitations 9
Definitions 10
Funding 10
Who is the guideline intended for? 10
Overview of guideline development 10
  Guideline development group 12
  Composition of Delphi panel 13
  Seed algorithm 14
  Evidence base 14
  Delphi process 17
Grading of evidence 19
Setting for guideline use 22
Guideline update 22
Audit 22
Disclaimer 23
Conflict of interest 23

Guideline

Guideline recommendations and strength of evidence 24
Implementation strategy 80
Patient leaflet 83
Guideline presented in the form of an algorithm 84
Tables 89

Appendix 1: Glossary of Terms and Abbreviations 94
Appendix 2: References 98
Introduction

Clinical guidelines are being developed in increasing number, not only in North America, Australia, New Zealand and Europe, but also in the United Kingdom [Woolf et al 1999]. The impetus for this is rising health care costs and an increasing patient demand for the best available care.

Paediatric attendance to the accident and emergency department (A&E) or an acute admissions ward in England continue to increase yet the length of stay in hospital continues to fall [Audit Commission 1993, RCPCH 2001, MacFaul 1994, Hill 1989]. Admission rates have increased from 40 per 1000 aged 0-4 in 1970 to 100 per 1000 in 1997 [RCPCH, 2001]. The reasons for this trend are not entirely clear. Children attending with medical conditions to A&E account for at least 15% of all attendances and it is estimated that at Sheffield Children's Hospital 40% of children under two years attending A&E department had a medical condition [BPA, 1988]. A recent study [Stewart et al, 1998] found that 50% of children presented acutely with one of three problems: breathing difficulty (25%), seizure (16%) and feverish illness (15%). The mean age of the recorded admissions was 3.5 years with a median of 1.9 years and 25% of the children were less than 6 months in age. A similar distribution was found in Nottingham [Armon et al, 2001a]. In this study, 30% of children presented with a breathing difficulty, 20% with a feverish illness and 5% with a seizure. Armon et al's study [2001a] identified that senior house officers are still the grade of doctor seeing the children most frequently. Their knowledge and experience may be variable and guidelines may help them keep up to date with current research thereby reducing variation in practice.

As indicated by the studies mentioned the presentation of children with acute breathing difficulty is a common problem in the acute setting. It is still a major cause of childhood morbidity and mortality not only worldwide but also in the U.K. Breathing difficulty may
be due to a number of different diagnoses ranging from a simple upper respiratory tract infection to asthma, croup or pneumonia. When a child presents to the hospital the end diagnosis may not be obvious and therefore, despite the availability of guidelines for asthma or bronchiolitis, these guidelines are not very helpful for the early management of a child.

**Aim of the guideline**

- To provide clinicians with recommendations for the management of children presenting with acute breathing difficulty based on the available evidence.
- To promote consistency of care of patients with similar clinical problems.
- To guide the decision-making process of junior doctors seeing the majority of patients in the first instance [Armon et al 2001a].

The guideline is presented in three sections:

1. Evidence-based recommendations for managing a child with acute breathing difficulty
2. An algorithm used to translate the recommendations into a format that can be implemented in the department
3. Patient information leaflet

In the first part of the guideline, the key recommendations are intended to direct clinicians to the most appropriate management of the patients based on appraised literature. Recommendations have also been included based on a multidisciplinary consensus opinion to provide guidance in clinically important areas. The guideline is transparent about which recommendations are evidence based and which are based on consensus. The transparency of the methods used to develop the guidelines allows individual clinicians or departments to implement the recommendations appropriately. The guideline development group promotes the application of the recommendations
alongside clinical judgement and patient circumstances and preferences. The technical report and a complete set of appendices are available on request from the lead author.

**Scope of the guideline**

Key areas covered:
- Children presenting to an acute department with an acute breathing difficulty
- The assessment of the child with acute breathing difficulty
- The management of the children from the point of presentation to the hospital to a decision regarding admission or discharge
- The management process includes recommendations regarding identification of the severity of the problem, appropriate investigations and treatment
- Discharge, admission and referral criteria

**Guideline limitations**

The guideline does not cover:
- Children presenting with chronic respiratory difficulties e.g chronic stridor
- Children with a known underlying respiratory abnormality such as bronchopulmonary dysplasia and cystic fibrosis
- Children presenting with a defined diagnosis rather than a breathing difficulty being their presenting problem
- Children who present with symptoms other than breathing difficulty but ultimately are diagnosed with a respiratory problem.
- Management of children in Primary care either before presentation or after discharge
- Management of children by the ambulance services or paramedics
- Management of children after referral to other specialties e.g. ENT or surgeons
- Management of children admitted to the ward
Definitions

Appendix 1 contains a full glossary of abbreviations and terms

Funding

Development of the guideline was funded by Children Nationwide Charity.

Guideline users

This guideline has primarily been written for use by junior doctors who see children in an acute hospital setting. Senior doctors, nurses or other professionals allied to medicine may wish to refer to its recommendations in order to keep them up to date with current evidence.

Overview of guideline development

Full details about the development process are available on request.

The guideline development process was based on the methodology suggested by the Scottish Intercollegiate Guideline Network [SIGN, 1999] and the 'AGREE' criteria used to appraise guidelines provided in the Royal College of Paediatrics Standards for development of clinical guidelines [RCPCH 2001].

A review of textbooks on respiratory paediatrics was used to gain a general overview of the subject. An initial review of the research literature was undertaken to determine the amount of evidence currently available. A search for existing guidelines, national and international, was important to identify the need for a problem-based guideline for children with acute breathing difficulty and to prevent the duplication of existing guidelines.
Internet web-sites searched for existing guidelines included:
AHCPRA (US Agency for Health Care Policy and Research)
Canadian Medical Association Clinical Practice Guidelines Database
Center for Disease Control and Prevention
New Zealand Guidelines Project
National Clearing House (USA)
Alumini Library Clinical Practice Guidelines
American Association of Respiratory Care
Center for Disease Control and Prevention Guidelines Database
Clinical Practice Guidelines Glossary
Evidence Based Guidelines
Primary Care Clinical Practice Guidelines
National Library of Medicine-medline plus
Jama website
WHO site (World Health Organisation)
American Academy of Pediatrics
CRD database
SIGN (Scottish Intercollegiate Guideline Network)
New Clinical Evidence Journal
DARE for links to relevant Web sites
National Institute of Clinical Excellence
National Electronic Library of Health
A guideline for children with cough and wheeze under the age of 1 developed by the Southern Auckland group were identified by personal contact with the developers.
The review of the literature and existing guidelines provided the outline of the decision tree (seed algorithm) that was to form the basis for the literature search for evidence on which to base the recommendations.

The literature was appraised by following recommendations for grading provided in a recent report by SIGN [2000]. A modified Delphi method [Armon 2001b] was used to provide consensus where evidence was lacking and to help translate the evidence into relevant and unambiguous recommendations.

The recommendations for clinical practice were based on:

- The results of a systematic literature search, review and appraisal of the available research evidence identified from the electronic databases from 1966 to 2001
- A review of the literature identified by hand searching journals thought to be most relevant to the subject from 1995 to 2001
- A search of the relevant journals not found on the electronic databases
- A limited search for unpublished studies
- Expert opinion from the Delphi panel, primary care physician and parent representative

**Guideline development group**

The composition of the group has been stated in an earlier section. Their aim was to overview the development process, to review the contents of the decision tree, to consider the composition of the Delphi panel and to discuss any disagreements arising during the development of the guideline.
Delphi panel

Sixty-five individuals were approached to be part of the Delphi panel, fifty-nine replied to the request and fifty individuals finally agreed to participate. The composition of the final panel is provided in table 1. The panel was composed of individuals from various disciplines involved in the management of children with breathing difficulty. The seniority of the members also ranged from academics and senior clinicians to more junior doctors. Members were selected from district general hospitals and tertiary referral centres in order to represent the health professionals involved at different stages of care. No individual was responsible for the selection of the members. The development group all contributed to the selection process and each member of the Delphi panel were selected for their expertise in different areas.

Table 1-Delphi panel

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Number who replied</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paediatric nurse</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Paediatric or emergency nurse</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Paediatric emergency nurse</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A&amp;E consultant</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Paediatric intensive care consultant</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Anaesthetic consultant</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Paediatric respiratory subspecialist</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Paediatric consultant with interest in assessment units and guidelines</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ear, nose and throat consultant</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Senior house officer</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Registrar with respiratory interest</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Registrar with an interest in guidelines</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>General paediatrician</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>
Seed algorithm

Following the method suggested by Margolis and Cretin [1999] a general review of the literature was used to identify key clinical questions relating to children with breathing difficulty. These questions were incorporated into a 'seed algorithm' and used as an outline for a more detailed review of the literature. The algorithm represents the sequence of events that is involved in the assessment and management of a child with an acute breathing difficulty.

The seed algorithm was broken down into detailed steps of the decision-making process. The clinical question asked in the 'seed algorithm' needed to be answerable [Sackett et al 2000] and evidence was sought to answer the questions. After appraising the literature relevant to the clinical questions, statements were derived which were supported by a discussion of the literature and a grade for the level of evidence and a grade for the strength of the recommendation.

Systematic Literature review

A systematic review of the literature was performed following the methodology suggested by SIGN [1999]. The literature was identified by an explicit search strategy according to pre-set criteria and evaluated against standards provided by SIGN [2000].

The search strategies used identified:

- Existing guidelines
- Systematic reviews and meta-analyses
- Randomised controlled trials
- Observational studies
Search strategy

Full details about the pre-set criteria for identifying the relevant literature and the results of the literature search for critical appraisal are available on request.

In general because research evidence in paediatrics is still sparse [Smyth 2001] it was not essential only to include well conducted randomised controlled trials. However, the studies needed to use an appropriate study design for the question asked and the study needed to be rigorous and provide results that were valid and reliable. Articles were chosen according to four criteria:

- Addressed the key clinical question.
- Indicated a thorough scientific review of the literature.
- A review or guideline that was written by a national body.
- An indication of a well designed clinical trial

We included the following computerised databases: The Cochrane Library, Medline, Embase, Cinhal, and Best Evidence. We searched from 1966 to the present using MesH headings and ‘textwords’, limited to 0-16 years of age. Further articles were obtained from colleagues and by hand searching the bibliography of articles. A hand search for the last 5 years of the most relevant journals was performed and the library provided a list of journals not found on Medline. The journals not listed on Medline were only searched if thought to be relevant to the subject area. The Internet was searched for existing guidelines and links to other evidence based sites.

In summary, after extraction of abstracts and appraising full copies of the relevant articles 77 studies were used to provide evidence-based recommendations. Information from reports or existing guidelines was also extracted where appropriate but the guideline is
clear about the source of information when providing a grade of recommendation. The articles were assessed for their relevance and quality and then critically appraised. Data was extracted using standardised data extraction forms [SIGN 2000]. Good quality data was recorded in evidence tables and the strength of evidence generated was graded. The level of evidence was graded 1 to 4 and recommendations were graded A to D based on the level of evidence found.

The seed algorithm and statements were all discussed with a respiratory paediatrician in order to check that the key clinical questions had been considered. All the appraised papers along with the summarised data extracted from them, the clinical questions that they address, a summary of the literature discussed and the final recommendation was sent to the Delphi panel. An opportunity was therefore given to the panel to provide additional references, question the appraisal of the papers and to refine the wording of the final recommendations.

The development group had decided in advance that all recommendations based on evidence should be included in the guideline even if the Delphi panel did not agree with them. This decision was made to keep in line with current opinion on evidence-based medicine i.e. that evidence should always be considered as superior to expert opinion alone. However, as explained earlier, all recommendation were given to the Delphi panel because this process enabled the clarity and understanding of the statements to be checked and any errors in grading to be amended. The grading was altered from a C to a B for one of the recommendations after this process. For one of the recommendations, two studies provided conflicting evidence and the Delphi process was used to identify which study was supported by consensus opinion. All these details will be made transparent in the guideline.
Where no research evidence could be found to support or answer the clinical questions, consensus opinion from the Delphi panel was followed. The Delphi panel was asked to indicate their agreement or disagreement with the recommendations made for practice. The recommendations were then reviewed in the light of the panel's responses and comments. This process not only helped to provide consensus opinion on the content of the recommendations but also provided feedback on the language used in the recommendations. Full details are available on request.

The final guideline has been developed in two formats; a report stating each clinical question and each recommendation and an algorithm, which is quicker and easier for clinicians to refer to and follow. A patient information leaflet and an implementation strategy accompany the guideline.

Table of the grades of recommendations included in the final guideline

<table>
<thead>
<tr>
<th>Grade of recommendation</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade A</td>
<td>8</td>
</tr>
<tr>
<td>Grade B</td>
<td>6</td>
</tr>
<tr>
<td>Grade C</td>
<td>14</td>
</tr>
<tr>
<td>Grade D</td>
<td>33</td>
</tr>
</tbody>
</table>

The Delphi process for consensus development

The aims of the consensus methods are to identify the extent of agreement within a panel and to identify areas of disagreement. Consensus methods can be used where evidence is lacking and in guideline development as a means by which evidence can be combined with clinical acumen and experience to provide a practical and useable clinical tool.
This guideline was developed using the Delphi method. The RAND Corporation (USA) developed this method. Its name is derived from the Greek oracle at Delphi, which was believed to have the power to predict the future. Its features are anonymity, controlled feedback, iteration (the process occurs in rounds allowing individuals to change their view) and a statistical group response [Pill 1971].

The first round consists of a questionnaire based on a systematic review of the scientific evidence, which is sent to the panelists who rank their level of agreement or disagreement with the recommendations on a Likert scale. Clinical questions requiring a consensus opinion where evidence is not available is also sent to the Delphi panel at this time. In the second round the questionnaire is mailed out to the respondents again. They receive feedback on the rest of the groups' responses allowing them to alter their judgement based on responses from the other respondents. Both statistical feedback (median and interquartile range) and qualitative feedback of comments are given to the respondents. This process continues and the participants continue to re-rank their agreement or disagreement with the statements until an accepted degree of consensus is reached [Jones 1995]. Finally, the responses are statistically analysed to determine which statements reached consensus of agreement or disagreement [Murphy et al 1998]. It must always be remembered that the consensus process is never used to undermine available evidence but to translate it into a form that can be used by clinicians.

In summary 50 multi-professional respondents took part in the two rounds of the Delphi process. When evidence was not available a recommendation was only included in the guideline if 83% of the respondents agreed with it. However, the development group reserved the right to include a recommendation supported by the majority of the panel if it was thought that there was an important reason for including the recommendation e.g. to be able to link the algorithm or if there was evidence available to support it.
Grading of evidence

The guideline is evidence-based for the recommendations where evidence was available but can be considered to be evidence-linked where it is based on consensus opinion. In many areas of paediatrics recommendations are based on consensus opinion due to lack of research evidence available. It was agreed to include recommendations based on evidence and consensus in the guideline but to be transparent about their source. Clinical recommendations based on consensus have primarily been developed to link the key evidence based recommendations together to facilitate the development of an algorithm.

The evidence for each recommendation was assessed using a formal system based from SIGN (2000). The system was originally based on that developed by the US Agency for Health care Policy and Research [AHCPR 1993] but was reviewed in 1998 by SIGN and refined to develop the grading system used for this guideline. The grading system outlined below links the strength of evidence to the grade of recommendation. It also ensures the evidence is assessed for its 'quality, quantity, consistency and applicability' [SIGN 2000]. This evidence grading method was used because it is a system recommended by the Royal College of Paediatrics and Child health and will therefore be in line with their requirements for guideline development. By using this grading system the strength of each recommendation will be determined by the quality of the evidence available. Recommendations based on consensus or expert opinion can be clearly distinguished from those derived from research studies. In this way the links between the recommendation are explicit [RCPCH 2001].

In order to be able to evaluate each study appropriately a checklist for each study design was followed. The use of the checklists allows a systematic approach to be followed for evaluation of the studies and ensures that 'relevant aspects are considered' [SIGN 2000]. The checklists developed by SIGN [2000] were followed so that there was consistency.
between the process of critical appraisal and the grading of the studies and recommendations.

**Table 2**  
**Levels of evidence**

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence (based on SIGN 2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>Evidence from high quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias</td>
</tr>
<tr>
<td>1+</td>
<td>Evidence from well conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias</td>
</tr>
<tr>
<td>1-</td>
<td>Evidence from meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias</td>
</tr>
<tr>
<td>2++</td>
<td>Evidence from high quality systematic reviews of case-control or cohort studies or high quality case-control or cohort studies with a very low risk of confounding, bias, or change and a moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2+</td>
<td>Evidence from well conducted case-control or cohort studies with a low risk of confounding, bias, or chance and a moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2-</td>
<td>Evidence from case-control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal</td>
</tr>
<tr>
<td>3</td>
<td>Evidence from non-analytical studies e.g. case reports, case series</td>
</tr>
<tr>
<td>4</td>
<td>Evidence from expert opinion</td>
</tr>
</tbody>
</table>
Table 3  Grading of recommendations

<table>
<thead>
<tr>
<th>Grade</th>
<th>Type of recommendation (based on SIGN 2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Requires at least one meta-analyses, systematic review or RCT rated as 1++, and directly applicable to the target population, and demonstrating overall consistency or results</td>
</tr>
<tr>
<td>B</td>
<td>Requires a body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results; or extrapolated evidence from studies rated as 1++ or 1+</td>
</tr>
<tr>
<td>C</td>
<td>Requires a body of evidence including studies rated as 2+, directly applicable to the target population and demonstrating overall consistency of results; or extrapolated evidence from studies rated as 2++</td>
</tr>
<tr>
<td>D</td>
<td>Evidence level 3 or 4; or extrapolated evidence from studies rated as 2+</td>
</tr>
</tbody>
</table>

The method used to derive the final recommendation involves four stages:

- Evaluation of the methodological quality of the evidence and the allocation of a quality rating.

  Study type + methodological quality  \[\rightarrow\] level of evidence

- Development of evidence tables for studies relating to each key clinical question to be addressed
• Using judgement to decide if the evidence is relevant to the clinical question and targeted patient population

• Grading of the recommendation

Strength of evidence + degree of extrapolation required \(\rightarrow\) grade of recommendation

It is obvious that a degree of judgement is required not only when selecting the studies relevant to the clinical questions asked but also during the assessment of the studies and the grading of the recommendation. A systematic and transparent method has therefore been adopted (as described above). The evidence, summary of the evidence, grade of evidence and recommendation were all presented to the multi-professional Delphi panel before inclusion in the guideline.

Where to use the guideline

The guideline can be used in any acute care setting when managing children with acute breathing difficulty

Updating of the guideline

It is anticipated that the guideline should be updated 2 years from its initial dissemination date.

Implementation and Audit

Pre-implementation data has been collected from the paediatric emergency department at the Queens Medical Centre where they have been developed and piloted. Data will be collected and analysed after the implementation of the guideline.
Clinical outcomes to be measured during this process include time to see each health professional, rates of admissions to hospital, length of stay in hospital, rates of investigations such as x-rays and invasive blood tests, and re-attendances to hospital. It would be possible for any institution implementing this guideline to undertake a similar audit process.

An implementation strategy has been included later in the document.

**Disclaimer**

It is important to remember that guidelines are only one tool used to improve patient care. Clinical acumen and judgement must always be used in conjunction with the guideline. Research is a continuum and it may be necessary to alter practice in light of new evidence before the guideline has been up-dated. It is also important for all clinicians to remember that all guidelines must be used in association with individual patient needs and preferences.

**Conflict of interest**

The views or interests of the charity funding the development of this guideline have not influenced the final recommendations.

Members of the development group have not expressed any conflict of interest with the development of the guideline.
Guidelines Recommendations with Rationale and Strength of Evidence

The aim of this guideline is to guide clinicians through the decision-making process for the management of a child presenting with acute breathing difficulty. The guideline has been presented as a list of recommendations but to encourage utilization and implementation it has been translated into an algorithm.

Initial management

A1 The most important pre-terminal signs of a child with breathing difficulty are:

a) exhaustion
b) bradycardia
c) silent chest
d) significant apnoea

(Listed in table 1)

Strength of evidence 4
Recommendation D
More than 83% consensus achieved

Rationale

When a child presents with a breathing difficulty, it is important to assess the severity of the problem and to identify those children that require basic and advanced life support.
The Advanced Paediatric Life Support Manual\textsuperscript{2} provides a list of signs indicating respiratory inadequacy, which have been derived by consensus. It is important to provide clinicians with a list of signs that should alert them that the child needs urgent attention.

A2 The following signs indicate that a child with a breathing difficulty is severely ill and requires immediate and urgent attention:

a) Inappropriate drowsiness (difficult to rouse)

b) Agitation

c) Cyanosis in air

(Listed in table 2)

\textit{Strength of evidence 4}  
\textit{Recommendation D}  
\textit{More than 83\% consensus achieved}

\textbf{Rationale}
These signs may not be independently reliable. They are not specific signs of a child who is severely ill but if these signs are present, they should alert a doctor or nurse that the child requires urgent attention.

A3 The child presenting with breathing difficulty and life threatening or pre-terminal signs will require further investigation and blood tests once stabilized.

\textit{Strength of evidence 4}  
\textit{Recommendation D}  
\textit{94\% consensus achieved}
Rationale
Blood tests must be performed by a clinician on some occasions. It is not possible in such a guideline to cover all scenarios but guidance should be given to clinicians on situations where blood tests should not be omitted.

**A4 All children presenting to hospital with an acute breathing difficulty should have their oxygen saturation measured.**

*Strength of evidence 2*

*Recommendation C*

*96% consensus achieved*

Rationale
The detection and effective management of hypoxia is an important aspect of the clinical management of acutely ill infants\(^3\). Pulse oximetry is commonly used to measure hypoxia so that oxygen can be administered if necessary. Poet et al\(^4\) state that noninvasive monitoring of oxygenation has become a standard procedure in paediatrics. The WHO\(^5\) (4D) have produced recommendations based on clinical signs to detect hypoxia and studies from the developing countries have tried to assess the sensitivity and specificity of these signs. In hospitals in the developed world, however, we do not usually need to rely on such methods but the need to identify hypoxia must be recognized.

Onyango et al\(^6\) (2++B) carried out a prospective study on infants and children presenting with symptoms of acute respiratory infection. After a clinical assessment, hypoxia was detected using pulse oximetry. Over half of the children studied were hypoxic and the mortality was 4.3 times greater in these children. This study was carried out in a developing country but emphasises the need to detect hypoxia in a child with respiratory symptoms.
Madico et al\(^7\) (2+C) studied children with lower respiratory tract infection with and without pneumonia. The WHO algorithm and radiographic examination was used to identify the children. Pulse oximetry was used to identify hypoxia. The 162 well children had a mean oxygen saturation of 98.7% +/- 1.5% compared with the children with acute respiratory tract infection (mean 93.8% +/- 3.5%). The combination of saturations measured by pulse oximetry and clinical signs of respiratory illness were found to be a highly sensitive way of detecting acute lower respiratory tract infection and therefore influencing management.

Mullholland et al\(^8\) (2+C) and Shaw et al\(^9\) (2+C) have also shown that pulse oximetry can be a measure of severity of illness in children with bronchiolitis. Mulholland\(^8\) found that, in children less than 15 months of age, the presence of cyanosis correlated with oxygen saturation less than 90%. Shaw et al concluded that in children with bronchiolitis, the oxygen saturation is the best predictor of illness severity and a low oxygen concentration is not always clinically apparent.

A study by Mower et al\(^10\) (2++B) looked at all children presenting to an accident and emergency department who did not require immediate intervention or resuscitation. If physicians only relied on their clinical evaluation they frequently failed to appreciate a reduction in oxygen saturations and alterations in management took place once the oxygen saturation levels were available. For the 305 patients with saturations less than 95%, 81 additional diagnostic tests were ordered after receiving the saturation measurements.

Manekar et al\(^11\) (2++B) studied the oxygen saturation levels in children presenting with respiratory illness to an emergency department. The physician's clinical impression as to
whether the child had a low saturation level was compared with pulse oximetry results. The sensitivity of clinical assessment was 33% and clinical assessment was therefore found to be a sub-optimal method for the detection of hypoxia.

In conclusion, all these studies support the importance of the accurate detection of hypoxia. There was some difficulty in allocating the grade of recommendation. It was finally agreed to recommend Grade C so that the recommendation was relevant to all children despite their underlying diagnosis. However, it was felt important to make clinicians aware of the technical pitfalls when using such a device such as a wrongly sized or poorly positioned probe. An accurate saturation can only be obtained if there is a good pulse signal when the child is still and quiet.

**A5** A child's oxygen saturation should be maintained above 92%. If necessary, oxygen therapy should be given to achieve this.

*Strength of evidence 4
Recommendation D
88% consensus achieved*

**Rationale**
It was extremely difficult to find evidence to address this issue. Most studies are not comparable because the population in the study and the instruments used differ.

The oxygen-haemoglobin dissociation curve is sigmoidal. At a saturation of 100%, large changes in the partial pressure of oxygen are required before the oxygen saturation will fall. The sigmoid curve is much steeper at a saturation of 90% and below this, only small changes in the partial pressure of oxygen will be required for the oxygen saturation to
fall. As mentioned above, Mulholland\textsuperscript{8} found that cyanosis was identified in children under 15 months if their oxygen saturation was less than 90%.

Poets et al\textsuperscript{12} (2++B) studied 70 healthy children with a mean age of 8 years and found that the median for the baseline oxygen saturation was 99.5% and the range was 95.8% to 100%.

The American Academy of Respiratory Care (AARC)\textsuperscript{13} have recommended an arterial oxygen saturation of less than 90% as representing hypoxia (4D) and have suggested that oxygen therapy be used with the intent of treating or preventing the symptoms and manifestations of hypoxia. It was very difficult to find an actual value at which oxygen should be administered.

Evidence based guidelines addressing respiratory problems such as, the emergency management of acute asthma by the Scottish Intercollegiate Guideline Network\textsuperscript{14}, the recently developed bronchiolitis guidelines by the Cincinnati Children's Hospital Medical Center\textsuperscript{15}, the guidelines for cough and wheeze from Southern Auckland\textsuperscript{16} and the British Thoracic asthma guidelines\textsuperscript{17}, all suggest that oxygen saturations should be maintained above 92% (4D).

In summary, 90% saturation or less indicates hypoxia and normal values are above 95.8% saturation. Most guideline groups have chosen 92% as being the level at which oxygen should be administered. Saturation monitors are known for their variable performance and different saturation monitors have different normal ranges. However, when a clinician sees a patient he is not usually aware of the technicality of the machine and it is therefore important to provide some guide to their use. Unfortunately we do not have
better evidence to support this recommendation and the recommendation is based on consensus.

A6 The respiratory rate should ideally be measured for 60 seconds.

Strength of evidence 2

Recommendation B

78% consensus achieved

Rationale

Simoes et al\textsuperscript{21} (2++B) compared respiratory rate counts by an observer and by pneumogram of 97 children over two 30 second periods and one 60 second period. The children were under 5 years of age with upper or lower respiratory tract infections or controls. The data suggested that the most accurate way to measure respiratory rate is to count for one minute either at a stretch or in two 30 second blocks, when the child is awake and calm or asleep.

Gadomski\textsuperscript{22} et al (2++B) also studied the accuracy of counting respiratory rates in children. Primary care physicians in the study were asked to count and record the respiratory rate of 14 children seen on videotape. Half the group was asked to count for 30 seconds and the other half for 60 seconds. Overall, the median respiratory rate counted over 60 seconds was 63.7 compared with 66.5 when counted for 30 seconds and multiplied by two. Counting over 30 seconds resulted in more false positives than counting over 60 seconds. There was no difference in the false negatives between the groups. Rates counted over 60 seconds were therefore more accurate than 30-second counts.
The Delphi panel did not reach the agreed 83% consensus level for this recommendation. The reason for this was that some of the panel thought that practically it is very difficult in a busy environment to carry through this recommendation. However, the purpose of a guideline is to present best practice and therefore the recommendation has been included due to the availability of evidence supporting it.

A7 Signs of increased work of breathing include:

a) Increased respiratory rate
b) Chest in-drawing
c) Nasal flaring
d) Tracheal tug
e) Use of accessory muscles
f) Grunting

(Listed in table 3)

Increased respiratory rate, chest in-drawing and nasal flaring:

*Strength of evidence 2*

*Recommendation C*

*92%, 98%, 88% consensus achieved*

Tracheal tug, accessory muscles and grunting:

*Strength of evidence 4*

*Recommendation D*

*94%, 92%, and 92% consensus achieved*

Rationale
Senior clinicians will rely on experience to know the signs indicating that a child is working hard. However, junior doctors and some nurses need to be reminded of these signs.

In order to develop guidelines relevant for the UK we have not included some very good studies from developing countries if the data was not relevant.

Few studies have tried to address the work of breathing in general terms or to evaluate what is the normal pattern of breathing and then to find evidence for what is abnormal. Most studies have addressed signs of respiratory difficulty in relation to the diagnosis of pneumonia but not in relation to bronchiolitis or wheezing children. In this guideline, we first want to identify children with any breathing difficulty before we decide on a diagnosis. It is for this reason that some studies have not been included at this point despite following a good methodology.

The WHO\textsuperscript{5} (4D) in their outpatient management programme of acute respiratory tract infections recognise chest indrawing, fast breathing, stridor or wheeze as representing signs of difficult breathing. They do also acknowledge that nasal flaring, grunting, and cyanosis are additional relevant signs but suggest that if these are present then other more easily recognisable signs will be present. There is an agreement in most textbooks about acceptable signs of the work of breathing. Taussig and Landau\textsuperscript{18} (4D) and Forfar and Arneil\textsuperscript{19} (4D) in their textbook of paediatrics state that respiratory rate, nasal flaring, use of accessory muscles and retractions are all useful in assessing work of breathing. Various studies have assessed the best sign for predicting a lower respiratory tract infection but there does not seem to be a consensus.
Usha \(^{20}\) (2+C) studied the reliability of some simple clinical signs. Seventy infants and 148 children attending the outpatient department for cough were studied. Clinical signs were compared with x-ray changes. The best indicators of lower respiratory infection were tachypnoea. Chest in drawing and nasal flaring were also useful but less sensitive measures of infection. The difficulty with the study was that x-rays were taken as the gold standard for the indication of the presence of a lower respiratory infection and it may be that children who had not yet developed x-ray changes still had an infection.

**A8 In children under 6 months of age respiratory rate is not an accurate measurement of respiratory illness.**

*Strength of evidence 2*

*Recommendation B*

**Rationale**

Study groups have tried to validate the data provided by the WHO on cut-offs for tachypnoea. Some papers have suggested that although the criteria are useful they should not be relied upon as being the sole predictor of lower respiratory tract infection.

This suggestion has been supported by a study by Campbell et al\(^{23}\) (2++B) which indicates the variability in respiratory rate for well children under 6 months and many of these well children would have fallen into the criteria of tachypnoea according to the WHO criteria on tachypnoea. Colin Morley et al\(^{24}\) (2++B) observed 1007 babies under the age of 6 months. 2 assessors carefully examined all babies. An assessment was made on presentation at the hospital with an acute illness but 298 of the babies were also randomly assessed at home. The median respiratory rate for an awake baby without a respiratory illness under the age of 6 months was 58 breaths/minute. The mean
respiratory rate for babies with a respiratory illness was 63 breaths /minute. The respiratory rate of babies with a respiratory illness was within the normal range of a healthy baby. The authors conclude that healthy babies breathe fast and that if the WHO criteria was used half of the babies in the study would have had a respiratory rate above 50/minute.

**A9 No recommendation can be provided for respiratory rate indicating tachypnoea. Further research is required.**

It has proved very difficult to find an evidence-based definition of tachypnea. Tachypnea is used as a measure of work of breathing but only a few studies have defined a normal respiratory rate. It is difficult to compare studies, which try to produce reference values for normal respiratory rates. The studies do not always account for whether the child was asleep, awake, agitated or calm. In some studies the respiratory rate is counted by observing the child, in others the chest is auscultated and in studies that claim to be more scientific and accurate, equipment such as a pneumogram is attached to the child. In some studies, children were included who presented to the A&E department and in others, children had a cough. Completely well children were therefore not included in the study. All the studies have shown that as a child gets older their breathing rate slows.

The WHO (4D) provides cut-off for fast breathing for 3 different age groups. Members of the WHO agreed upon these values. Their criteria has been used throughout the developing world as a way of determining which children may have a lower respiratory tract infection. Study groups have tried to validate the data provided by the WHO on cut-offs for tachypnoea. Some papers have suggested that although the criteria are useful they should not be relied upon as being the sole predictor of lower respiratory tract infection.
The Delphi panel could not reach the required 83% consensus level for a recommendation to be made. In the light of the available evidence, much of which relates to specific diagnoses, it was decided not to include a recommendation but to suggest that further research is required in this area.

**A10 The following are recommendations of definitions to be used for children presenting with acute breathing difficulty:**

**Stridor** indicates limitation of airflow in the upper airway at the larynx or tracheal level. It is a harsh or rasping respiratory noise reflecting upper airway obstruction, usually inspiratory but may be biphasic.

*Strength of evidence 4*

*Recommendation D*

*94% and 96% consensus achieved*

**Wheeze** indicates limitation of airflow in the lower airway. It is a high pitched whistling noise heard on auscultation which is usually more pronounced in the expiratory phase indicating intrathoracic airway obstruction

*Strength of evidence 4*

*Recommendation D*

*92% and 100% consensus achieved*

**Stritdror** is an airway generated sound caused by obstruction at pharyngeal level e.g. due to large tonsils.
**Definition provided by ENT consultant**

**Grade of evidence 4**

**Recommendation D**

**Rationale**

The inclusion of panel members from different disciplines such as ENT made it apparent that clinicians caring for children must be able to distinguish stridor from stertor and this should be made apparent in the guideline.

A11 The adapted table can be used to identify the severity of a child presenting with a breathing difficulty

**Table 4-Assessment of breathing difficulty, adapted from WHO management of acute respiratory infections in children. World Health Organisation, Geneva, 1995**

<table>
<thead>
<tr>
<th>Assessment of severity(breathing difficulty)</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen saturation in air</td>
<td></td>
<td>92-95%</td>
<td>&lt;92%</td>
</tr>
<tr>
<td>Chest wall indrawing</td>
<td>None/mild</td>
<td>moderate</td>
<td>severe</td>
</tr>
<tr>
<td>Nasal flaring</td>
<td>absent</td>
<td>May be present</td>
<td>obvious</td>
</tr>
<tr>
<td>Grunting</td>
<td>absent</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Apnoea/pausing</td>
<td>absent</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Feeding history</td>
<td>Normal</td>
<td>Approximately half of normal intake</td>
<td>Quantity, half normal intake</td>
</tr>
<tr>
<td>Behaviour</td>
<td>Normal</td>
<td>Irritable</td>
<td>Lethargic Unresponsive Flaccid Decreased level of consciousness Inconsolable</td>
</tr>
</tbody>
</table>

All signs or symptoms do not have to be present for a child to be severe.
Strength of evidence 4

Recommendation D

76% consensus achieved

Rationale

Colin Morley et al\textsuperscript{24} (2++B) have concluded from their study that respiratory rate alone is not a reliable indicator of the severity of a baby’s respiratory illness. Palafox et al\textsuperscript{25} (2+C) made the observation that for the first 3 days that a child had symptoms of pneumonia, tachypnoea is not always present and therefore not a reliable sign and cannot be relied upon in the early stages of an illness. Tachypnoea has therefore not been included in the table.

World Health Organisation\textsuperscript{5} (4D) has produced a table to help assess the severity of a child with pneumonia. The table combines a number of clinical signs. The table can be adapted by combining it with important clinical signs that detect a serious illness, to cover all breathing difficulties therefore allowing a clinician to easily identify a child with severe illness requiring admission.

The table did not reach the 83% consensus level, but it has still been included so that juniors have some guidance to severity of illness. We have been completely transparent about the level of consensus achieved.

A12 A child with acute breathing difficulty should be admitted to hospital if they fall into any of the following category:

a) Oxygen saturation less than 92% in air

b) Has signs of severe respiratory distress (table 4)
c) Has signs indicating that a child with a breathing difficulty is severely ill and requires immediate and urgent attention (table 1 and 2).

d) A child with mild to moderate breathing difficulty who has other signs of serious illness (Table 5).

Table 5 Symptoms of Serious Illness (adapted from Viral Upper Respiratory Tract Guideline by Institute for Clinical Systems Improvement and the WHO recommendations on the management of children with cough or breathing difficulty)

<table>
<thead>
<tr>
<th></th>
<th>&lt;2 months</th>
<th>2 months -3 years</th>
<th>4 years-adult</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Responsiveness and activity</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaccid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannot awaken or keep awake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak cry or weak suck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsolable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refuse feedings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Dehydration and vomiting</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced wet nappies&gt; 8 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No urine&gt; 6-8 hrs if &lt; 1yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No urine&gt; 12 hrs if &gt; 1yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Meningeal signs</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiff neck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|                    |           |                  |               |
| **Responsiveness and activity** |           |                  |               |
| Unresponsive        |           |                  |               |
| Cannot awaken or keep awake |           |                  |               |
| Markedly decreased activity |           |                  |               |
| Inconsolable        |           |                  |               |
| Weak suck or weak cry (if infant) |           |                  |               |
| Refuses feeding     |           |                  |               |
| **Dehydration and vomiting** |           |                  |               |
| No urine> 6-8 hrs if < 1yr |           |                  |               |
| No urine> 12 hrs if > 1yr |           |                  |               |
| **Meningeal signs** |           |                  |               |
| Stiff neck          |           |                  |               |
| Persistent vomiting |           |                  |               |
| Severe headache     |           |                  |               |
| **Other**           |           |                  |               |
| petechial and purpuric rash | petechial or purpuric rash | decreased urination with |
| convulsions                 | convulsions               | decreased intake        |
| very high fever            | very high fever          | petechial or purpuric    |
| hypothermia                | unresponsive to treatment| rash                    |
| capillary refill<3 sec     | capillary refill<3 sec   | convulsions             |
|                            |                            | very high fever         |
|                            |                            | unresponsive to treatment|
|                            |                            | capillary refill > 3 sec |

**Strength of evidence 4**

**Recommendation D**

98%, 98%, 100%, 96% consensus achieved respectively

**Rationale**

The recommendations provided suggest some clear guidance on which patients should be admitted to hospital. As we know, any guideline must take into account patient circumstances and there may be a need for judgement in some circumstances.

**A13 Blood tests should be considered in a child presenting with acute breathing difficulty and having other signs of serious illness (table 5).**

**Strength of evidence 4**

**Recommendation D**

92% consensus achieved

**Rationale**

It is important to highlight to clinicians, situations in which they must consider to perform blood tests.
A14. If a child presents with mild to moderate breathing difficulty but has the following complicating factors, the child may require a short period of observation in hospital:

a) Co-morbidity e.g. prematurity, congenital heart disease, chronic lung disease, neurological disorder

b) Social problems e.g. previous non-accidental injury, ill parents, parents having difficulty coping

c) Infants younger than 2 months

(Listed in table 6)

Strength of evidence 4

Recommendation D

96%, 92%, 86% consensus achieved respectively

Rationale

There is no evidence that analyses the most important features to be taken into account when deciding on admission of a child. Most children with mild to moderate disease do not require admission but it is important to identify those that the clinician needs to be alerted to.

B. Child presenting with stridor/stirtor

The first two recommendations are aimed to highlight two rare but life threatening problems i.e. epiglottitis and bacterial tracheitis. They are seen infrequently and may be forgotten when a child is seen. It is therefore important to include them in the guideline so that they are considered in the list of differential diagnoses of a child presenting with stridor.
B1 In a child with stridor, epiglottitis must be considered if the child is agitated, or drooling or there is absence of a cough.

**Strength of evidence 2**  
**Recommendation C**  
88% consensus achieved

**Rationale**

In England, epiglottitis is now a rare disease due to the Haemophilus type B vaccination. However, the disease still exists. R Mauro et al\textsuperscript{28} (2+C) carried out a prospective study identifying children presenting to the A&E with stridor. The study identified symptoms and signs that helped to predict the diagnosis of epiglottitis. Drooling, agitation and absence of a cough were found to be useful predictors.

B2 Bacterial tracheitis can cause severe airway obstruction and should be considered in a child with a croup-like illness (barking cough and stridor) if there is a combination of the following:

a) Toxicity  
b) High fever  
c) No response to treatment for croup i.e. no improvement in respiratory distress following accepted treatment for croup

**Strength of evidence 3**  
**Recommendation D**  
98%, 86%, 84% consensus achieved respectively
Rationale

There is very little literature on bacterial tracheitis. There is however, agreement that some of the symptoms are similar to those of viral croup and it must therefore be differentiated from this diagnosis.

One paper by Henry et al\textsuperscript{29} (3D) and one by Jones et al\textsuperscript{30} (3D) have observed children admitted with upper airway obstruction. Jones observed 8 infants and children over 14 months. Children with bacterial tracheitis failed to respond to interventions in the management of croup. The patients had marked subglottic mucosal oedema and mucopus was seen below the subglottic swelling when the trachea was suctioned. The majority of patients grew staphylococcal aureus on culture. Henry observed 7 children over a 2-year period. At endoscopy there was mucopus and debris. Staphylococcal was the most common pathogen isolated. The children were found to be toxic and had a high fever and were older than the age typical for viral croup.

The next section refers to a child with inspiratory stridor and a barking cough and unlikely to have epiglottitis or bacterial tracheitis and therefore likely to have croup

B3a Nebulised budesonide or dexamethasone are effective in treating croup

Strength of evidence 1
Recommendation A
96% consensus achieved

Rationale

In the medical literature there is a consensus of opinion that a child presenting with a barking cough, inspiratory stridor and hoarseness is likely to have viral croup. Several
review articles (Macdonald, Kaditis, Rosekrans, Couriel) all agree with the above presenting symptoms.

Glucocorticoids are one treatment that has been used in the management of children with viral croup. Authors from the cochrane acute respiratory group have completed a systematic review (1++A) on the use of glucocorticoids in croup. The authors concluded that:
1. Glucocorticoids are effective in improving symptoms of croup in children as early as 6 hours after treatment.
2. Adrenaline, which can also be used in the treatment of croup, was used less often as an additional intervention and children spent less time in hospital.
3. Nebulised budesonide or dexamethasone, given orally or intramuscularly, are both equally effective in treating croup.
4. The authors were not able to compare the route of administration in a meaningful way.
There is extremely good evidence that glucocorticoids are effective treatments.

B3b In a child with suspected croup, oral dexamethasone is cheaper and as efficacious as budesonide. Until more evidence becomes available, oral dexamethasone should therefore be used in preference to nebulised budesonide except in those children who are vomiting or unable to tolerate oral.

Strength of evidence 4
Recommendation D
90% consensus achieved

Rationale
There is not clear evidence about the dose to be used or method of administration.
Nebulised budesonide has not been shown to be more effective than oral steroids. The authors of the cochrane review have suggested that oral dexamethasone be the preferred steroid to be used because of its safety and efficacy. Nebulised budesonide can be reserved for a child who is vomiting. Intramuscular dexamethasone is also effective but is a more painful route of administration. Further research is needed into the most effective dose and route of administration required.

**B4a L-epinephrine (adrenaline) can be used in children with severe croup in addition to oral or nebulised steroids**

**Strength of evidence 1**

**Recommendation B**

**96% consensus achieved**

**Rationale**

Studies in North America have shown a positive outcome when racemic epinephrine has been used. Westley et al\(^{(36)}\) (1-B) has shown that nebulised racemic epinephrine is effective in the treatment of acute signs of croup. However, racemic epinephrine is not available in the U.K. Studies that are more recent have looked at using L-epinephrine, which is available in the U.K.

Waisman et al\(^{(37)}\) (1+A) studied children aged 6 months to 6 years and compared treatment with racemic epinephrine and l-epinephrine in a randomised double blind fashion. He was able to show that l-epinephrine can be used safely and effectively instead of racemic epinephrine for the treatment of acute croup. The effect was only short term and only lasted for 60 to 90 minutes after the treatment. The study emphasised the risk of a
rebound effect and therefore suggests hospitalization for children treated with l-epinephrine.

Fitzgerald et al\cite{38} (1+B) studied children aged 0.5 years to 6 years. In a randomized, double blind study he was able to show that nebulised adrenaline is as effective as nebulised budesonide in the treatment of children with moderately severe croup. All patients had significant improvement from baseline observations and there was no significant difference between the two groups. Other studies mentioned above have shown that oral medication is as efficacious as nebulised budesonide. From this we can extrapolate that nebulised adrenaline is as efficacious as oral dexamethasone. Fitzgerald et al\cite{38} (1+B) have speculated that if used sequentially nebulised budesonide and adrenaline may have an additive effect. However, further studies are needed in this area.

**B4b If treated with l-epinephrine (adrenaline) a child with severe disease requires close observation. Admission to intensive care or high dependency for observation should be considered.**

*Strength of evidence 4*

*Recommendation D*

*92% and 98% consensus achieved*

*The next section refers to a child presenting with stridor or stirtor but has no barking cough and no evidence of epiglotitis.*

**Rationale**

North American studies\cite{39-41} have recently shown that children could be discharged safely after 2 -3 hours of being given racemic epinephrine. These studies are not relevant to the British population who use l-epinephrine (adrenaline) and no studies have been carried
out to look at early discharge after this treatment. We need to decide whether in relation to the British population treated with nebulised l-epinephrine, all children requiring this treatment need to be admitted to a high dependancy or intensive care unit.

**B5** Enlarged tonsils should be considered in a child presenting with breathing difficulty and stirtor. The child should be referred to the ENT surgeons.

*Strength of evidence 4*

**Recommendation D**

*Highlighted by ENT surgeon participating in the Delphi process*

**Rationale**

During the Delphi process it was apparent that it was important to highlight a child with stirtor separately from stridor. By doing this, it is possible to identify children with pharyngeal problems. These children should be referred to the ENT surgeons if they are causing severe respiratory distress. Enlarged tonsils should be considered and a child urgently referred if found.

**B6** Aspiration of a foreign body should be considered in a child presenting with stridor. The child could also present with cough, wheeze or breathlessness.

*Strength of evidence 2*

**Recommendation C**

84%, 90%, 92% and 94% consensus achieved

**Rationale**
Barharloo\textsuperscript{42} (2+C) carried out a retrospective study of a 20-year experience. The peak incidence of foreign body aspiration occurred in the second year of life. The study included 84 children up to 8 years old and 28 adults. Forty-nine percent of patients presented with a sudden onset of choking and intractable cough. Other presenting symptoms included, fever, breathlessness and wheezing.

**B7** A child presenting with a history of choking, paroxysmal cough or any suspicion of foreign body should have a chest x-ray.

*Strength of evidence 4*

*Grade of recommendation D*

*96% consensus achieved*

**Rationale**

If aspiration of a foreign body is considered, guidance on the appropriate investigations also needs to be provided.

**B8** A normal chest x-ray cannot rule out the diagnosis of foreign body aspiration.

*Strength of evidence 2*

*Recommendation C*

*100% consensus achieved*

**Rationale**

Chest x-rays are performed in children with a history of foreign body aspiration. Svedstrom\textsuperscript{43} (2+C) found that plain film radiology alone was neither sensitive nor specific enough to diagnose foreign body aspiration. Twenty-four per cent of patients
who had a foreign body found on endoscopic examination showed no abnormalities on radiology. The sensitivity of the test in this study was 68% and specificity was 67%.

Mu^{44} (3D) in their retrospective review of 400 children found that in two thirds of the children a normal x-ray was reported. It is important to perform a chest x-ray on children with suspicion of aspirated foreign body, but it is important to realise that a normal x-ray does not exclude the diagnosis.

**C. Child presenting with wheeze.**

*This section is concerned with the management of children presenting with wheeze*

C1 The presence of a foreign body should be considered in a child presenting with acute breathing difficulty and wheeze.

*Strength of evidence 2*

*Recommendation C*

66% consensus achieved when the word 'excluded was used'. More than 93% consensus would have been achieved if we had originally used the word 'considered'.

*Rationale*

This statement has been included so that clinicians do not automatically treat children with bronchodilators without considering a diagnosis of a foreign body aspiration.

C2 During the acute management of a child with wheeze it is not possible to differentiate between those who will have transient symptoms and those who will later develop asthma. After consideration of diagnosis of a foreign body the acute
management should focus on the relief of symptoms rather than the ultimate diagnosis

*Strength of evidence 2*

*Recommendation B*

*84% consensus achieved*

**Rationale**

The British Thoracic Society\(^\text{17}\) (4D) now state that there are difficulties when using terms such as asthma in young children. They suggest that to avoid disagreement we should not try to define asthma in the young but to use terms such as wheezing illness or infantile asthma.

Some studies have tried to differentiate between different children with wheezing illness at a young age. A large birth cohort study has been carried out by Martinez et al\(^\text{47}\) (2++B) and found that the majority of infants who wheeze have transient conditions and do not have a risk of asthma or allergies later in life. These children do not have an increased risk of asthma or allergies in later life. The study did find that maternal asthma, maternal smoking, rhinitis apart from colds, eczema during the first year of life and male sex were all independently associated with persistent wheezing. A minority of infants with early wheezing probably have a predisposition to asthma. This study did not go on to assess whether the two groups should be treated differently.

C3 The criteria suggested by the British Thoracic Society regarding the differentiation between mild, moderate, severe and life threatening asthma or wheeze should be accepted

Table 7-Severity of Asthma, taken from BTS
Table of Severity of Asthma Based on BTS Guidelines

<table>
<thead>
<tr>
<th>Age</th>
<th>Under 5 years</th>
<th>Over 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild to Moderate</td>
<td>Wheeze and cough with tightness and mild dyspnoea, no distress, no speech or feeding difficulty</td>
<td>Wheeze and cough with tightness</td>
</tr>
<tr>
<td></td>
<td>Mild respiratory distress</td>
<td>Able to talk</td>
</tr>
<tr>
<td></td>
<td>Respiratory rate &lt;50</td>
<td>PEFR &gt;50% predicted</td>
</tr>
<tr>
<td></td>
<td>Pulse &lt;140 bpm</td>
<td>Pulse &lt;120</td>
</tr>
<tr>
<td></td>
<td>Saturations &gt;92% in air</td>
<td>Saturations &gt;92% in air</td>
</tr>
<tr>
<td>Moderate to Severe</td>
<td>Too breathless to talk</td>
<td>Too breathless to talk</td>
</tr>
<tr>
<td></td>
<td>Too breathless to feed</td>
<td>Too breathless to feed</td>
</tr>
<tr>
<td></td>
<td>Respiratory rate &gt;50/min</td>
<td>Respiratory rate &gt;40/min</td>
</tr>
<tr>
<td></td>
<td>Pulse &gt;140/min</td>
<td>Pulse &gt;120/min</td>
</tr>
<tr>
<td></td>
<td>Use of accessory muscles</td>
<td>PEFR &lt;50%predicted</td>
</tr>
<tr>
<td>Life Threatening</td>
<td>Cyanosis</td>
<td>Cyanosis</td>
</tr>
<tr>
<td></td>
<td>Silent chest</td>
<td>Silent chest</td>
</tr>
<tr>
<td></td>
<td>Poor respiratory effort</td>
<td>Poor respiratory effort</td>
</tr>
<tr>
<td></td>
<td>Fatigue or exhaustion</td>
<td>Fatigue or exhaustion</td>
</tr>
<tr>
<td></td>
<td>Agitation or reduced level of consciousness</td>
<td>PEFR &lt;33%predicted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agitation or reduced level of consciousness</td>
</tr>
</tbody>
</table>

**Strength of evidence 4**

**Recommendation D**

88% consensus achieved

C4 In children under the age of 2, the limited evidence does not support the widespread indiscriminate use of anticholinergic agent i.e. anticholinergic agents should only be used on a trial basis on children under the age of 2 until further research is available

**Strength of evidence 1**

**Recommendation A**
80% consensus achieved

Rationale
Everard\(^{48}\) (1++A) has recently published a Cochrane systematic review addressing this problem. Studies were included if they studied children under the age of 2 years, which therefore included that less than 12 months in whom anticholinergics are frequently used. The results of the review indicated that:

1. The only hospital based study of ipratropium bromide and placebo did not demonstrate any statistical significant benefit.
2. The addition of ipratropium bromide to beta-agonists was not associated with any consistent evidence of benefit over beta-agonists alone.
3. Further studies would be required before ipratropium bromide could be dismissed as ineffective.

This well conducted systematic review has identified the poor evidence base for its use and further research is required. The review was not able to come to a conclusion as to whether in this age group of children a combination of the 2 treatments is beneficial.

C5 In a child under the age of 2 with wheeze, a trial of either an anticholinergic agent, beta-2 agonist or both can be used to relieve symptoms. Oxygen saturation and response to treatment must be monitored.

Strength of evidence 4
Recommendation D
92% consensus achieved
In children over the age of 2 with moderate to severe asthma, the addition of 4-6 hrly anticholinergics to the beta 2-agonists inhalation regimen is indicated if there has been poor response to beta 2 agonist alone.

**Strength of evidence 1**

**Recommendation A**

92% consensus achieved

**Rationale**

Plotnick and Ducharme have recently completed a Cochrane systematic review addressing this issue (1++A). The review only included studies that involved children aged 18 months to 17 years. Children under the age of 18 months were not included. The review concluded that in children with acute asthma the addition of multiple doses of anti-cholinergics to inhaled beta 2-agonists appears to improve lung function and may decrease hospital admission. The systematic review includes studies of children between 18 months and 2 years, however, the evidence is not clear for this age group and has therefore not been included in the final statement.

In children over the age of 2, without life-threatening asthma (Table 7) and not requiring oxygen, holding chambers (spacers) could be used instead of nebulisers in most situations.

**Strength of evidence 1**

**Recommendation A**

90% consensus achieved
A large variety of inhaler devices exist for the treatment of asthma. The National Institute of Clinical Excellence\textsuperscript{50} has recently produced guidance for clinicians for the treatment of chronic asthma. Cates and Bestall\textsuperscript{51} (1++A) have carried out a systematic review addressing inhaler devices for the treatment of acute asthma. Studies involving children presenting to emergency department or presenting to a community setting over the age of 2 were included in the review. The review concluded that none of the outcome measures were significantly worse with holding chambers and therefore they could be substituted for nebulisers in the treatment of acute asthma in emergency departments. The review suggests that paediatric patients using holding chambers may have shorter stays in the emergency department, less hypoxia, and lower pulse rates, compared to patients receiving the same treatment via a nebuliser. It did not address children with life threatening symptoms and this group of children should not be included in this discussion. The review did not comment that the cost of the different modes of treatment might be the deciding factor in different hospitals.

C8 All children, regardless of their age, with moderate-severe or life threatening wheeze should be prescribed a short course of oral steroids.

\textit{Strength of evidence 4}

\textit{Recommendation D}

\textit{84\% consensus achieved}

\textbf{Rationale}

It is important to give guidance on which children should be receiving oral steroid treatment if they present with wheeze. The British Thoracic Society\textsuperscript{17} have suggested that all children including those under the age of 12 months should be treated with oral steroids if they have moderate to severe or life threatening wheeze. However, they
acknowledge that there is no good research that can provide us with the information to decide whether children under the age of 12 months benefit from oral steroids. A consensus opinion needed to be achieved to address this issue.

**C9 Aminophylline should continue to be used for the treatment of acute severe life threatening asthma when other treatments including salbutamol and corticosteroids have been unsuccessful**

*Strength of evidence 4*

*Recommendation D*

*88% consensus achieved*

**Rationale**

Children presenting with acute severe or life threatening asthma will be admitted to hospital but their treatment will start immediately on presentation to hospital. It is for this reason that treatment with aminophylline is being discussed here. Aminophylline may be considered in the A&E department before admission actually takes place. The asthma guidelines include aminophylline in the treatment of acute asthma. However, now that nebulised beta 2-agonists and steroids are used routinely there is evidence that there may be no additional effect of aminophylline. If this is the case why should aminophylline continue to be prescribed for children with acute asthma?

Recent studies have tried to address this issue. At present despite using randomised control trials different results have been found. No systematic review could be found. Needleman et al\(^6\) (1+B) found that children receiving steroids and inhaled beta2-agonist did not have a shorter stay in hospital or a quicker rate of improvement in clinical score if they were given intravenous aminophylline rather than placebo. This study excluded
children who were admitted to the intensive care unit and therefore who potentially may be the children benefiting from the aminophylline.

Nuhoglu et al\textsuperscript{57} (1+B) carried out a similar randomized control trial and assessed the improvement in clinical score of the children. This study also found that intravenous aminophylline demonstrated no additional benefit if children were also treated with beta 2-agonists and steroids. Yung and South\textsuperscript{58} (1++A) have carried out a larger study. This was also a randomized double blind placebo controlled trial. It included children who were admitted to the intensive care unit and who were ventilated. The results of the study showed that the aminophylline group had a greater improvement in spirometry at 6 hours and higher oxygen saturation in the first 30 hours but at the cost of increased adverse effects. None of the aminophylline group required intubation compared with 5 children in the placebo group. The authors concluded that aminophylline should still be used for the emergency treatment for severe acute asthma in critically ill children when other treatments are unsuccessful.

At present the cochrane airways group is completing a systematic review to see if aminophylline is effective in children over the age of 2. This issue can be re-considered once this review is complete.

\textit{The next section will consider investigations for a child presenting with wheeze or asthma}

C10 Chest x-rays do not routinely need to be performed on every child presenting with their first acute attack of wheeze. Consider if there are atypical clinical features (e.g. focal signs, suspicion of foreign body).
Strength of evidence 2

Recommendation C

76% consensus achieved

Rationale
Gershel et al\textsuperscript{52} (2+C) assessed the value of routine x-rays during acute first attacks of wheeze. The study population consisted only of children over the age of 1 but who presented with an initial episode of wheezing. The study found that in most instance children with a combination of abnormalities on auscultation and of vital signs such as tachypnoea, tachycardia, fever, localised rales, and localized breath sounds could identify children who were likely to have abnormal findings on x-ray. The results of the study did not support routine x-ray in children with first presentation of wheeze. The authors suggest careful clinical examination to identify a sub-group who will benefit from the investigation.

Mahabee-Gittens et al\textsuperscript{53} (2-D) recently carried out a retrospective review of children under 18 months visiting the emergency department with wheezing. They made similar conclusions to Gershel's\textsuperscript{52} study. They concluded that patients who were found to have focal infiltrates on chest x-ray were more likely to have a history of fever, temperature, or crackles on examination. They also found that on less than 1 % of x-rays were there finding other than those representing bronchiolitis, asthma, or focal infiltrates. The authors therefore recommend selective use of x-rays. They suggest that children with wheeze should be x-rayed if they have a history of fever, temperature more than 38.4, or crackles on examination.

A more recent study by Walsh-Kelly et al\textsuperscript{54} (2+C) studied children of all ages with an initial episode of wheezing presenting to the children's hospital. Only 6.2% of children in
this study had pathological radiological findings. 25.4% had normal findings and in the majority i.e. 68% reactive airways disease was identified. However, no combination of variables was able to identify patients with pathological chest disease. The authors therefore, suggest that in order to be able to identify the children who present with first time wheeze and have underlying pathology the practice to x-ray all children presenting in this way should be continued.

Due to the variation in advice, a consensus needed to be achieved. The majority of the panel agreed with the recommendation provided.

**C11 A child presenting with acute asthma/wheeze do not routinely require a chest x-ray**

*Strength of evidence 2*

*Recommendation C*

*98% consensus achieved*

**Rationale**

At present, there is not strong evidence to give firm guidance on this issue. Both the SIGN asthma guidelines\(^{14}\) (4D) and the British Thoracic asthma guidelines\(^{17}\) (4D) do not suggest that routine x-rays be performed in acute asthma.

Brooks\(^{55}\) (2+C) studied all children who were admitted to the Buffalo Children's Hospital between January 1980 through May 1980 admitted with acute asthma unresponsive to emergency treatment. The study showed that in this particular group of children there was a low incidence of x-ray abnormalities. The abnormalities rarely altered management and the authors therefore conclude that routine x-rays may not need to be performed but
acknowledge that x-rays may still be required in children who are particularly ill or unresponsive to treatment.

C12 A child presenting with acute wheeze/asthma with the following unusual signs should have a chest x-ray when stable:

a) unilateral reduced air entry and hyperresonance on percussion (signs of pneumothorax)
b) no improvement after treatment of severe symptoms

**Strength of evidence 4**

**Recommendation D**

*96% and 98% consensus achieved respectively*

**Rationale**

Even though routine x-rays are not required clinicians do require some guidance on situations where x-rays should be performed

C 13 A child presenting or admitted with acute wheeze does not routinely require blood tests.

**Strength of evidence 4**

**Recommendation D**

*92% and 94% consensus achieved*

**Rationale**

Invasive tests should not be unnecessarily carried out on children. It is therefore important for clinicians to be clear when they do not need to be performed routinely.
In this section we will discuss a child under the age of 2 who presents with wheeze.

In this age group it is important to identify a child who has bronchiolitis. A child may present with a wheeze and then using clinical signs and symptoms a working diagnosis of bronchiolitis may be made. Children not thought to have bronchiolitis have been discussed in the section above. We will now discuss the management of children who are thought to have bronchiolitis. Many of the decisions for a child with bronchiolitis have already been addressed in earlier sections. The child with complications, with signs of a serious illness and low oxygen saturations has already been covered. We will only discuss questions in this section that have not been covered already.

D1. Bronchiolitis is a seasonal viral illness characterised by fever, nasal discharge, and dry wheezy cough. On examination there are fine inspiratory crackles and/or high pitched expiratory wheeze.

**Strength of evidence 4**

**Recommendation D**

**90% consensus achieved**

**Rationale**

According to Rakshi and Couriel77 (4D), a child with bronchiolitis usually has a fever and nasal discharge, which then develops into a dry cough with distressed breathing. On examination the child has fine inspiratory crackles and may have a high pitched expiratory wheeze. This definition is accepted in the U.K but is different from that in the United States and therefore one must interpret some of the studies carried out in the
U.S.A with caution. In the U.S.A there is much more emphasis on the inclusion of wheeze in the diagnosis.

**D2 In a child clinically diagnosed with bronchiolitis, bronchodilators should not be routine practice. A trial may be considered but stopped if found to be of no help.**

*Strength of evidence 1*

*Recommendation A*

*86% consensus achieved*

**Rationale**

Kellner et al\(^7\)\(^8\) (1++A) from the cochrane acute respiratory infections group have completed a systematic review to address whether bronchodilators are beneficial in the management if bronchiolitis. The review concluded that bronchodilators produce modest short-term improvement in clinical features of mild or moderately severe bronchiolitis. The review does not recommend routine use of bronchodilators. However some of the studies did show an improvement in clinical score and the reviewers acknowledge that the outcome measures assessed may not be adequate to measure the improvement that may occur from treatment.

**D3 During a trial of bronchodilator therapy the child should be closely monitored for clinical deterioration and hypoxaemia and treatment stopped if there is no clinical improvement.**

*Strength of evidence 1*

*Recommendation A*

*86% consensus achieved*
Rationale

A double blind placebo controlled trial by Ling Ho\textsuperscript{85} (1+A) and an observational study by C.O' callaghan\textsuperscript{86} (2+C) found that some infants have a deterioration in lung function and may become hypoxic after administration of salbutamol.

**D4 Budesonide is not recommended in the management of a child with bronchiolitis.**

*Strength of evidence 1*

*Recommendation A*

*100% consensus achieved*

Rationale

A multi-center randomised double blind placebo controlled trial by A.Cade et al\textsuperscript{82} (1++A) and a smaller trial by Richter\textsuperscript{83} (1+A) found no clinical benefit from the administration of nebulized corticosteroid.

**D5 Oral or intramuscular steroids are not recommended in the routine treatment of a child with bronchiolitis.**

*Strength of evidence 1*

*Recommendation A*

*98% consensus achieved*

Rationale

Double blind randomized controlled trials by De Boek\textsuperscript{79} (1+A) and by Roosevelt\textsuperscript{80} (1++A) studying the efficacy of dexamethasone therapy for children with bronchilitis
found no advantage in the use of this treatment. We could find no randomised control trial that recommended the use of dexamethasone. A randomised double-blind placebo controlled trial by Klassen et al\textsuperscript{81} (1++A) set out to determine the clinical benefit of oral dexamethasone in children treated with nebulised salbutamol. No affect on the clinical course of the disease was found. The difficulty with Roosevelt's study and with Klassen's study are that they were carried out in countries where the definition of bronchiolitis is different from that in the U.K., therefore further research in British infants is required.

**D6 In a child with bronchiolitis and severe respiratory distress, a trial therapy of nebulized adrenaline (l-epinephrine) may be considered after discussion with a senior clinician**

*Strength of evidence 1*

*Recommendation B*

*60% consensus achieved*

**Rationale**

Most studies addressing this issue have been carried using racemic epinephrine, which is not available in the United Kingdom. A double blind randomized control trial by Menon\textsuperscript{84} (1+A) is the only study we could find using adrenaline (l-epinephrine). In this study at 60 minutes after the therapy there was a statistically significant improvement in oxygen saturations and Menon concluded that nebulised epinephrine was more efficacious than salbutamol for infants with acute bronchiolitis. However, only 42 patients were included in the study and therefore further larger research studies are required before adrenaline can routinely be recommended in the treatment of a child with bronchiolitis. A majority consensus was achieved with this recommendation but only 60%. Clinicians are concerned in the U.K about the use of adrenaline in children.
Currently there is only one study that has been performed using adrenaline. It is for this reason that despite the study being a randomised controlled trial a grade B has been attributed to this recommendation.

**D7 If treated with adrenaline (l-epinephrine) the child requires close observation. Admission to intensive care or high dependency for observation should be considered.**

*Strength of evidence 4*

*Recommendation D*

*98% and 92% consensus achieved respectively*

**Rationale**

If we are to accept the recommendation it is important to consider where the ongoing care will be provided.

**D7 Blood tests are not routinely recommended in the management of a child with bronchiolitis.**

*Strength of evidence 4*

*Recommendation D*

*96% consensus achieved*

**Rationale**

One of the aims of the guideline is to reduce unnecessary investigations. Bronchiolitis is a viral illness and the only reason to carry out blood tests would be if there were concerns about the presence of a bacterial infection. Studies mentioned in previous statements have
shown the difficulty in differentiating viral from bacterial pneumonia and therefore routine blood testing is not recommended routinely.

**D8 Routine x-ray of a child with clinically diagnosed bronchiolitis is not recommended.**

**Strength of evidence 2**

**Recommendation C**

*92% consensus achieved*

**Rationale**

Numerous review articles have been written in this area and have discussed whether x-rays or other clinical features can help predict the severity of a child's illness. Prematurity, age less than 2 months and apnoea at presentation have been suggested to be important in predicting the severity of illness. The articles addressing this issue have produced conflicting results and it is for this reason that it is very difficult to provide a definitive evidence based recommendation. The Cincinnati evidence-based guideline for infants with bronchiolitis\(^{15}\) (4D) does not recommend routine chest x-rays but does not clarify whom the exceptions would be. Clinicians are left to make their own judgements for specific cases.

Bronchiolitis is a viral infection and the only reason for doing an x-ray is to diagnose whether a child has a bacterial pneumonia. Swingler\(^{66}\), as mentioned previously, has suggested that children over the age of 2 months who are not admitted to hospital should not have a chest x-ray and an observational study by Friis\(^{87}\) et al (2+C) did not show correlation between a viral or bacterial diagnosis and the chest x-ray. Friis studied 128 infants and children under the age of 7 years. The children under the age of 6 months
were more likely to have x-ray changes localised to one lobe or segment but this did not correlate with positive bacterial findings. The study does not support routine x-ray of a child with bronchiolitis but the authors do suggest caution in children under the age of 6 Months. There is also concern about children under the age of 2 months. Children of this young age are thought to be at risk of severe illness. A consensus opinion needs to be achieved as to whether all children presenting with symptoms of bronchiolitis at this age should have a chest x-ray.

D9 A child aged less than 2 months with clinical signs of bronchiolitis should be admitted if they are at risk of developing serious disease (see table 8)

Table 8 Infants at risk of developing severe disease

<table>
<thead>
<tr>
<th>Apnoea</th>
<th>Preterm birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying disorders such as :</td>
<td>Lung disease e.g bronchopulmonary dysplasia, cystic fibrosis</td>
</tr>
<tr>
<td></td>
<td>Congenital heart disease</td>
</tr>
<tr>
<td></td>
<td>Immunodeficiency (congenital or acquired)</td>
</tr>
<tr>
<td></td>
<td>Multiple congenital abnormalities</td>
</tr>
<tr>
<td></td>
<td>Severe neurological disease</td>
</tr>
</tbody>
</table>

Strength of evidence 4

Recommendation D

98% consensus achieved

Rationale
Guidelines for admission for children have been provided earlier. This recommendation refers specifically to children with clinical bronchiolitis.

**E Child presenting with a cough**

*Previous sections should be referred to if a child has wheeze or stridor.*

E1 A child who has aspirated a foreign body can present with a cough

*Strength of evidence 2*

*Recommendation C*

*90% consensus achieved*

**Rationale**

Addressed in an earlier section

E2 A child presenting with a breathing difficulty and a history, paroxysmal cough or any suspicion of foreign body aspiration should have a chest x-ray.

*Strength of evidence 4*

*Recommendation D*

*96% consensus achieved*

**Rationale**

Addressed in earlier section
E3 In a child with cough and breathing difficulty the probability of pneumonia is increased in the presence of any of the following:

a) tachypnoea
b) grunting
c) chest in-drawing
d) fever

Strength of evidence 2

Recommendation C

88% and 93% consensus achieved respectively

Rationale

Most of the studies encountered when reading the literature were not appropriate for our population. They were carried out in the developing world or on malnourished children or were not comparable with each other due to them using different cut-off points or using different methodology or the age groups studied varying from study to study. It is therefore difficult to produce any precise guidelines based directly on the current evidence. However, we can use the evidence to develop guidelines based on a combination of evidence and consensus opinion.

The World Health Organisation (4D) have produced an algorithm for the developing world to help with making the diagnosis of a lower respiratory tract infection. To some extent we can base our guidelines on these but we must adapt them for our population who will not be exposed to the same infections, will have access to different health care, may present at an earlier stage in the disease and will probably not be malnourished.

The WHO algorithm stresses the importance of tachypnoea as indicating pneumonia. Other signs that relate to the severity of the pneumonia are chest in-drawing, nasal
flaring, grunting, and cyanosis. The algorithm suggests that any child with chest in
drawing have severe pneumonia.

Various different studies have tried to assess the sensitivity and specificity of these signs
but we could not find any grade 1 trials that studied this issue. In most studies, the gold
standard used for the diagnosis of pneumonia was a positive chest x-ray. This
incorporates bias into these studies because children who were more likely to have
pneumonia from their clinical signs were more likely to have a chest x-ray. The other
problem is that according to Palafox et al\(^ {25} \) (2+C) children in the early stages of
pneumonia may not have a positive x-ray despite having clinical signs.

In most studies, tachypnoea is recognised as being important for predicting pneumonia.
The predictive value of this sign differs between different studies. Only a few studies
have been carried out in the developed world and these are all biased to some degree.
Leventhal\(^ {59} \) (2+C) studied 136 children attending the emergency department. They
recorded important clinical signs and symptoms as per the study questionnaire. A chest x-
ray was taken and the predictive value of signs and symptoms for the diagnosis of
pneumonia was calculated. The absence of tachypnoea was useful for ruling out
pneumonia and one third of children with tachypnoea had pneumonia on x-ray. Grunting
and nasal flaring increased the chance of pneumonia but their absence could not be relied
upon to rule out pneumonia. The predictive value of a cluster of symptoms was then
studied. The study found that the classical cluster of symptoms associated with
pneumonia (fever, cough, and rales) did not improve the ability to predict a diagnosis of
pneumonia. Of the children with at least one pulmonary finding (respiratory distress,
tachypnea, rales or decreased breath sounds) 27% had an x-ray finding of pneumonia and
all children without pulmonary findings had a normal x-ray. The height of fever in
children with a sign of pneumonia was not found to be a predictor of pneumonia. The
difficulty with this study is that the authors do not give a definition of tachypnoea and the ability of the clinicians to observe signs in the child.

A study by Taylor et al\textsuperscript{60} (2+C) studied 576 patients under the age of 2 with a temperature of 38 degrees or more. A positive chest x-ray was used to diagnose pneumonia. Children with pneumonia were found to have a significantly higher respiratory rate than those without pneumonia. The positive predictive value of tachypnoea as a sign of pneumonia was 20.1\% and the negative predictive value was 97.4\%. The authors concluded that if tachypnoea was not present it would exclude the diagnosis of pneumonia in most children. The predictive value of other signs or symptoms such as cough was not discussed in this study. The problem with study was that it was carried out on a very select group of patients and therefore would not include all the children presenting without a temperature but with clinical signs. The other problem was that chest x-rays were not obtained for every patient and therefore some children with pneumonia may have been missed.

Two studies from the developing countries have observed children presenting with a breathing difficulty and a cough. Harari et al\textsuperscript{61} (2+C) and another by Mulholland et al\textsuperscript{62} (2+C) overcame the problem of bias of x-ray by carrying out x-rays on all children with abnormal clinical findings. Both studies found that the presence of tachypnoea or chest in-drawing or both was a good indication of pneumonia. Harari’s study found that chest indrawing and/or respiratory rate over 50 per minute had a positive predictive factor of 45\% of x-ray evidence of pneumonia and 83\% negative predictive factor. Harari’s study found that the presence of fever or crepitations was not helpful in the diagnosis of pneumonia. The study concluded that antibiotics should be given to children with a cough and tachypnoea or chest in drawing. The study was well conducted but we must remember that the study groups are children from a developing country who may have
more severe pneumonia than children in England or a higher incidence of bacterial pneumonia are.

In Palafox et al's (2+C) study, tachypnoea showed the highest sensitivity (74%) and specificity (67%) for diagnosing pneumonia. In children who had the disease for less than 3 days, tachypnoea had a lower sensitivity and specificity. The authors conclude that in the first 3 days of an illness, clinicians should rely on this sign cautiously and therefore the absence of tachypnoea does not necessarily mean the absence of pneumonia.

MacFaul et al carried out a prospective study (unpublished) on 2300 paediatric admissions. The table included is a summary of the symptoms and signs found to help to predict pneumonia.

<table>
<thead>
<tr>
<th>Age</th>
<th>Presenting problem category: 'Breathing difficulty'</th>
<th>Symptom combination: cough, fever without breathing difficulty</th>
<th>Symptom combination: cough, fever with breathing difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td>9%</td>
<td>14%</td>
<td>19%</td>
</tr>
<tr>
<td>&lt; 1 year</td>
<td>11%</td>
<td>6%</td>
<td>25%</td>
</tr>
<tr>
<td>1-3 years</td>
<td>6%</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>&gt; 3 years</td>
<td>8%</td>
<td>23%</td>
<td>36%</td>
</tr>
</tbody>
</table>

From this study it appears that a combination of cough, breathing difficulty and fever increase the likelihood that a child has pneumonia. High fever was also found to be an important sign by Campbell et al (2+C).
The next section will discuss the role of chest x-rays, other investigations and management of children with a clinical suspicion of pneumonia.

E3

a) All children under the age of 2 months with clinically suspected pneumonia should have a chest x-ray

*Strength of evidence 4*

*Recommendation D*

94% consensus achieved

b) Children over the age of 2 months with signs suggesting pneumonia but who do not require admission to hospital do not routinely require a chest x-ray. An x-ray may be indicated if there has been no response to oral antibiotics or the patient is not presenting with the first episode of pneumonia

*Strength of evidence 1*

*Recommendation A*

80% consensus achieved

c) A child admitted to hospital with clinically suspected pneumonia i.e. with cough and severe respiratory distress should have a chest x-ray

*Strength of evidence 4*

*Recommendation D*

89% consensus
Rationale

The gold standard for diagnosing pneumonia is a positive chest x-ray. However, a child in the early stages of the disease may not have a positive chest x-ray. If a child has positive clinical signs but a negative x-ray it is questionable whether the child should be treated with antibiotics, therefore, it is questionable whether there is any advantage in performing the x-ray if it does not alter management?

Swingler\textsuperscript{66} (1++A) has concluded from his cochrane systematic review that there is no evidence to show that performing a chest x-ray in ambulatory children aged over 2 months with an acute lower respiratory infection improves outcome. This evidence only applies to ambulatory children and not to children admitted to hospital. The studies included did not assess children under the age of 2 months.

A consensus opinion needed to be achieved about whether children under the age of 2 months who are clinically suspected to have pneumonia or any other respiratory infection should have a chest x-ray regardless whether they are ambulatory or not. A consensus was also needed for whether all children admitted to hospital with suspected pneumonia should have a chest x-ray.

E4 Even when a chest x-ray is taken, it is not accurate enough to be able to differentiate between viral and bacterial pneumonia.

Strength of evidence 2

Recommendation C

96% consensus achieved

Rationale

No randomised-controlled trials have been carried out to address either of these issues. The studies that have tried to assess the accuracy of a chest x-ray for differentiating
between viral and bacterial pneumonia are not comparable. Their methodology can be questioned and many have been carried out on small groups of children. Some studies have been carried out on outpatients and others on in-patients, the ages of the children involved also varies; therefore, the study groups are not comparable. Bacterial and viral pneumonia are diagnosed by methods that are not 100% sensitive or specific and therefore relying on these methods for accurately diagnosing bacterial or viral pneumonia is not in itself accurate and therefore biases the results. A study by Korppi et al\textsuperscript{67} (2+C) has also shown that lobar consolidation is not the only type of radiological picture associated with pneumonia but bacterial infection alone or mixed with viral infection can be associated with interstitial and alveolar infiltrates.

It was possible to find studies that attempted to assess the accuracy of a chest x-ray for the detection of viral or bacterial pneumonia. However, there is no agreement between the results of the studies. A study by Swischuk\textsuperscript{68} (2+C) found overall 90% accuracy when trying to identify the type of pneumonia. This is not supported by results from Bettenay’s\textsuperscript{69} study (2+C) which found that when an x-ray suggested a bacterial infection only there was actually only a 30% chance of isolating a bacteria.

The flaws from these studies have been mentioned above and therefore no strong conclusion can be made from them. Despite all these difficulties, it is apparent from the studies that it is difficult to diagnose pneumonia radiologically and to differentiate between viral and bacterial pneumonia.

\textbf{E5 In children with clinically suspected pneumonia a normal chest x-ray cannot exclude pneumonia}

\textit{Strength of evidence 2}
**Recommendation C**

**88% consensus achieved**

**Rationale**

In many studies, the chest x-ray has been used as a gold standard for diagnosing pneumonia. However, inter-observer variability in the interpretation of x-rays ultimately affects the results of the studies. As mentioned earlier in Pafalox's study, the x-ray is not always positive in the first few days of the illness. This in itself introduces a variable into the studies.

Davies et al. studied the chest x-rays of 40 infants under the age of 6 months admitted with lower respiratory tract infection and showed that there is variation in intraobserver and inter-observer agreement among radiologists. The authors suggest that clinicians should be aware of this problem when treating children. However, the gold standard of pneumonia, lobar consolidation, appeared to be reliable.

Another study by Kiekara et al. was carried out on a much larger group of children. Chest x-rays of 201 hospitalized with suspected or confirmed pneumonia were evaluated 3 years apart. 127 cases were diagnosed with definite pneumonia on both occasions. In 46 of the cases (24%) variation between the two evaluations occurred. The study found that radiological diagnosis of pneumonia was difficult in children and not all children had lobar consolidation but some children had interstitial or alveolar pneumonia.

**E6**

a) No laboratory tests should be routinely performed on children with clinically suspected pneumonia who are not admitted to hospital
b) It is not necessary to carry out blood tests in a child admitted to hospital with clinically suspected pneumonia but who is treated with oral antibiotics

c) All children admitted to hospital with clinically suspected pneumonia and who will be treated with intravenous antibiotics should have a full blood count and blood culture. Acute phase reactants, urea and electrolytes are not required routinely.

d) Acute phase reactants such as ESR and CRP do not help distinguish between viral and bacterial infection.
Laboratory tests are usually performed to help with the diagnosis or to identify the causal agent of the pneumonia. Therefore, they should only be carried out if they can actually help with either of these. The investigations carried out vary according to the doctor's experience and the tests available in the hospital. The decision regarding the laboratory investigation of a child is based on expert opinion and textbook advice. Few studies have addressed this issue in the context of patient management. Some studies have looked at the prevalence of bacteraemia but these studies cannot be compared because some involve children from the developing country, others involve children seen in outpatients departments, and therefore these studies are not comparable.

Hickey (2+C) carried out a retrospective review of x-rays of 939 patients in a tertiary children's hospital who had radiographic evidence of pneumonia. Four hundred and nine (44%) of these patients had blood cultures taken. Only 11 (2.7%) grew pathogenic bacteria. This study probably over-estimated the rate of bacteraemia because in 56% of cases a blood culture was not taken and this was more likely to occur in children with mild pneumonia who may not have shown any evidence of bacteraemia. The study also found that clinical management was not altered because the antibiotic regime was started prior to the culture results being available and antibiotic regimes were not altered on the basis of the laboratory reports. The study has many flaws because it is retrospective and relies firstly on the radiographic diagnosis of pneumonia and then on the technique of the clinician doing the blood culture. Despite the results of this study, other papers based on consensus opinion provide a range of positive blood cultures between 10 and 40% and a review by Heath states that a pathogen is not found in 20-60% of cases.

We could find no evidence relating the results of white blood counts with the management of patients. A raised white blood count with a predominance of polymorphonuclear cells usually indicates bacterial disease but we were not able to find
any studies that addressed whether doctors waited for these results before treating a
patient and whether their management altered once these results were available.

Turner et al\(^{74}\) (2+C) however, carried out a study on 98 patients with radiologically
diagnosed pneumonia. They found that both children with proven viral and bacterial pneumonia had an equally raised white count but the total neutrophils were greater in children with bacterial infection indicating that full blood counts are useful in differentiating between viral and bacterial infection if interpreted correctly.

Similarly a raised CRP and ESR are thought to be associated with bacterial infection but this test is not always available and again no studies have looked at the influence of the result on the management of the patient. Turner et al found no statistical difference between the CRP's of children with viral or bacterial infection. Turner's study may be biased because only 98 patients were studied and also because all patients seen in the out-patients clinic and the emergency room were included and therefore did not represent the more severely ill children. However, by conducting the study in this way the results reflect the mix of patients who usually present. Nohynek et al\(^{75}\) (2+C) also found that neither full blood count, CRP nor ESR helped in the diagnosis of pneumonia because an abnormal value could neither prove nor disprove a bacterial infection.

The results of viral studies on the patient's blood are not rapidly available and therefore have little influence on the immediate management of a patient. Viral immunofluorescence may be useful in identifying a virus but has little effect on the immediate management of a patient.
A recent study by Clements et al\textsuperscript{76} (2+C), has shown that that polymerase chain reaction provides a rapid method for diagnosing bacterial pneumonia and increased the diagnostic from 13\% to 31\%. However, this is an expensive and therefore not readily available test. Children who have mild to moderate pneumonia and the intention is that they will be sent home will probably not wait for their blood results and their management will not be altered on the basis of the laboratory test results.

A difficulty arises in children who are admitted to hospital but are able to tolerate oral antibiotics. It is in these children that a consensus opinion needs to be achieved to decide whether invasive investigations are necessary. It is not clear from the evidence, which children should have investigations taken and I have therefore provided a number of alternative questions to assess the degree of agreement with each question.

**E7** A child admitted to hospital with clinically suspected pneumonia should be prescribed parenteral antibiotics if they have either of the following:

a) toxic appearance
b) severe respiratory distress
c) vomiting
d) immunocompromised
e) dehydrated and requiring intravenous fluids

*Strength of evidence 4*

*Recommendation D*

90\%, 94\%, 94\%, 92\% and 94\% consensus achieved

Rationale
We were unable to find any evidence that could provide the answer to this question. No randomised control trials exist to address whether intravenous antibiotics are more efficacious than oral antibiotics in children with pneumonia. The question is difficult to answer due to the variation in antibiotics used in different hospitals and the variation in severity of the illness. Different antibiotics achieve different therapeutic levels in the blood. Some drugs are well absorbed orally others are not. The other difficulty is that often by the time a child is admitted to hospital they are vomiting and not tolerating oral medication or the parents have already treated their child with a course of antibiotics at home. It is therefore difficult to provide evidence-based guidelines on how to prescribe antibiotics. A consensus must be achieved to help with this part of the guideline.

Children with mild to moderate symptoms and who are going to go home should do so on oral antibiotics. Jadavi et al (4D) have developed a list of recommendations for children admitted to hospital who may require parenteral antibiotics. These recommendations were used in the Delphi process for the development of this guideline.

E8 The antibiotic used for the treatment of a child with community acquired pneumonia should be chosen according to the local protocol

Strength of evidence 4

Recommendation D

90% consensus achieved

Rationale

Pneumonia can be caused by different organisms depending on the country and the area. Different hospitals have their own protocols for the antibiotics that should be used in the treatment of pneumonia depending on the local antibiotic resistance and the drugs on the
hospital formulary. It is difficult therefore to provide a recommendation to answer this question

**Implementation strategy**

During the development of the guideline it was important to consider the process of implementation. Unless guidelines are disseminated and implemented they are unable to bring about the change in behavior intended.

**Dissemination**

It is the aim of the guideline development group to raise the awareness of the existence of the guideline so that clinicians in other hospitals can take advantage of the work that has already been completed and not spend time producing similar guidelines. We hope to publish the guideline in peer reviewed journals, to present it at national and international meetings and to disseminate it via an authoritative body such as the Medical Colleges.

**Steps involved in implementation of the guideline**

*Identify target users*

Target users were identified so that the guideline could be presented in a format that could be easily implemented. The guideline development group decided that junior doctors should be the main users of the guideline.

The guideline has been presented in two forms. The complete guideline including a full technical report and appendices can be referred to by clinicians who wish to understand the source of information they are instructed to follow. In addition, the algorithm can be used by clinicians who feel they have little time to read and wish to follow a guideline in a quick and easy to follow form. The algorithm has been designed in such a way that it
could easily be presented in electronic format on the internet or intranet promoting easy access to the guideline and therefore dissemination and distribution.

**Identifying stakeholders**

Junior doctors do not work independently. They will work together with nurses, senior clinicians, members of other disciplines, primary care doctors and patients themselves. It is important that as many stakeholders as possible are involved in the development of the guideline at the outset. The Delphi process has the advantage that it allows easy access and involvement of the stakeholders. Senior clinicians in the hospital where the guideline was piloted were included in the Delphi process to reduce potential barriers to implementation at a later stage. Guidelines presented in electronic format are becoming increasingly popular and it would therefore be important to include individuals involved with this process such as clinical audit co-ordinators, clinical effectiveness co-ordinators and the hospital information and technology department. Close links were therefore developed with our audit department who have a particular interest in clinical guidelines.

**Quality**

The guideline has been developed using rigorous and transparent methods. This allows the guideline to be flexible so that it can be adapted for local use, especially where it has been based on consensus opinion.

**Education and communication**

It is important that guidelines are not just disseminated to their users but also implemented. Within the hospital, it is necessary to hold training sessions so that clinicians are not only aware of the presence of the guideline but also how to use it. Training sessions may be held individually, as small workshops or as much larger conferences.
Local opinion leaders and members of groups carrying authority such as the clinical governance teams are important for the promotion of the guideline. They are able to emphasis the benefits of using guidelines and encourage audit and feedback to inform professionals about the implementation process.

**Audit and feedback**

It is important for all organisations using guidelines to audit their effect on the management of patients. This not only provides valuable information on any modifications that may be required to be made to the guideline on a local level but also to help encourage clinicians to use the guideline. This guideline is currently being audited in Nottingham.

**Care pathways**

We decided not develop a care pathway for this guideline because we thought that it would be more appropriate for this to be developed at a local level so that the guideline can be incorporated in the current documentation used by individual organisations.

**In summary**

Implementation is an extremely important part of the development process. Strategies have been used to implement the guideline at the hospital in which the guideline was developed. However, we have tried to provide here an outline of essential components to the implementation of the guideline that can be used at other institutions.
Breathing Difficulties in Children - Information for parents

Your child is well enough to be looked after at home at present but if he/she becomes ill they may need to be seen again. This leaflet is about the first day or two after your child leaves hospital. We are giving you this to help you when you are at home.

Your child has been in hospital with: 

When you take your child home:
It is important that you:
1. encourage your child to drink plenty little and often
2. check their breathing and colour (see below)
3. give your child the medication prescribed by the doctor

You must call a doctor or go back to the hospital if:
1. your child is struggling to breathe and getting very tired
2. your child is too breathless to talk or your baby is grunting
3. your child changes colour and becomes pale grey, white or blue around the lips
4. you are worried that your child has got worse

If you require further advice you can contact:
1. Your own GP
2. NHS direct - 0845 4647
3. Other

REMEMBER IF YOU ARE WORRIED ASK FOR HELP
Algorithm for the management of children with acute breathing difficulty

This algorithm must be used in sequence starting with page 1 and finishing with page 5.

A glossary of terms and abbreviations has been provided.
The relevant tables accompany the guideline.
Where drugs are mentioned we have chosen to follow 'medicines for children' until further evidence is available.
The full technical report is available by e-mailing monica.lakhanpaul@nottingham.ac.uk
ACUTE BREATHING DIFFICULTY

Presence of pre-terminal signs or signs requiring urgent attention **Table 1&2**

No

Measure respiratory rate for 60 secs & oxygen saturation

If $O_2$ sat $\leq 92\%$, Give oxygen and admit

? Signs of increased work of breathing **(Table 3)**

No

? Signs of serious illness **(Table 5)**, /complicating factors **(Table 6)**

No

? URTI  
*Home* with GP follow up, Patient education,

**Check:** Airway Breathing Circulation

Start basic life support + Call appropriate team for advanced life support

Admit to HDU/PICU

Admit if severe distress **(Table 4)**

Go to page 2,3 or 4

Mild/moderate distress, **(Table 4)** admit if complicating factors/serious illness **(Table 5&6)**

D/W senior Dr  
Consider alternative diagnoses **(Table 10)**  
Arrange appropriate investigations  
Admit
STRIDOR (limited airflow at larynx or trachea) or STIRTOR (noise due to obstruction at pharyngeal level)

?BARKING COUGH

Yes

?Toxic+ high fever

Yes

Secure airway

Admit to PICU/HDU

Treat with:
Oral dexamethasone

If vomiting:
Use nebulised budesonide

Yes

Secure airway

Admit to PICU/HDU

?signs of potential respiratory failure (Table 1&2)/

1.Give l-epinephrine (adrenaline) nebuliser
2.Admit for close observation
3 PICU/HDU

No

If strong suspicion of aspiration

Refer urgently to ENT

CXR

Yes

?Normal

No

Refer to appropriate doctor for bronchoscopy

?Epiglottitis

Yes

?Agitated/ drooling

No

?Enlarged tonsils

Yes

?Stirtor

No

Call for senior assistance
Consider ENT referral
Admit to PICU/HDU

?Foreign body aspiration

Yes

No

1.Signs of severe resp distress (Table 4)
2.Signs of serious illness (Table 5)

Yes

No

1.Consider adrenaline nebuliser
2. ADMIT

No

Home with GP follow up, patient education and call back instructions

No

?Agitated/ drooling

N

?Enlarged tonsils

No

?Foreign body aspiration

N

1.Signs of severe resp distress (Table 4)
2.Signs of serious illness (Table 5)

Yes

No

1.Give l-epinephrine (adrenaline) nebuliser
2.Admit for close observation
3 PICU/HDU

Yes

1.Give l-epinephrine (adrenaline) nebuliser
2.Admit for close observation
3 PICU/HDU

N

?Bacterial tracheitis

N

?Epiglottitis

N

?Stridor (limited airflow at larynx or trachea) or STIRTOR (noise due to obstruction at pharyngeal level)
WHEEZE

History of choking or paroxysmal cough

Yes

Continue management as for other children presenting with wheeze BUT
CXR if ?foreign body aspiration /other atypical features e.g. focal signs but no symptoms of bronchiolitis

Assess severity (Table 7)

If high suspicion refer to appropriate surgical team

Age>2

Yes

?Mild/moderate symptoms (Table 7)

1. B<sub>2</sub>-agonist via spacer

1. HOME
2. Follow up instructions

No

Moderate/severe (Table 7)

Life threatening (Table 7)

Yes

1. B<sub>2</sub>-agonist (volumatic if not on O<sub>2</sub>)
2. Oral steroid
3. +/- 4-6hrly anticholinergic

1. Check ABC
2. Follow BTS guidelines i.e IV aminophylline +steroids+ frequent B<sub>2</sub>-agonist
3. ADMIT to HDU/PICU
4. X-ray when stable

No

1. Trial of B<sub>2</sub>-agonist /anticholinergic
2. Monitor O<sub>2</sub> sats
3. Discontinue if no effect
4. X-ray if ?pneumothorax (unilateral reduced air entry +hyperresonance on percussion)

Age<2

Yes

1. Dry wheezy cough
2. Fever
3. Nasal discharge
4. Fine inspiratory crackles and/or high pitched exp wheeze

?Bronchiolitis
See cough algorithm

No

Mild/moderate

1. ADMIT to ward
2. If no improvement inc. frequency of B<sub>2</sub>-agonist up to 1/2 hrly or continuously
3. Follow BTS guidelines
4. Consider x-ray

1. HOME
2. Follow up instructions

Mod/severe/life threatening

1. ADMIT
2. Short course of oral steroids
3. ?X-ray if no improvement
4. Follow BTS guidelines i.e inc frequency of bronchodilator
COUGH

If accompanied by wheeze or stridor see appropriate algorithm

?Paroxysmal cough or high suspicion of foreign body

Yes → CXR

No

1. Dry wheezy cough
2. Fever
3. Nasal discharge
4. Fine inspiratory crackles and/or high pitched expiration

Combinations of cough + breathing difficulty and:
1. Fever
2. High resp rate
3. Grunting
4. Chest in-drawing

Yes → Bronchiolitis

No

1. Trial of bronchodilator
2. Stop if no clinical improvement
3. Monitor O₂ sat
4. No steroids
5. No routine blood tests/x-ray

? Severe distress (Table 4)

No

Pneumonia

Mild/moderate distress (Table 4)

1. X-ray child under 2 months/ if no response to antibiotics/recurrent pneumonia
2. No routine blood tests
3. Oral antibiotics if clinically suspected
4. HOME with follow up instructions

Severe distress (Table 4)

1. CXR
2. Oral/iv antibiotics according to local protocol
3. FBC & B. culture if requires IV antibiotics (Table 9)
4. No routine blood tests if on oral rx
5. ADMIT

Yes → ? Severe distress (Table 4)

No → Re-assess child

Admit if:
1. Signs of serious illness (Table 5)
2. Complicating factors (Table 6)
3. Inc risk of serious disease (Table 8)
Tables included in the algorithm

Table 1 Pre-terminal signs

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaustion</td>
</tr>
<tr>
<td>Bradycardia</td>
</tr>
<tr>
<td>Silent chest</td>
</tr>
<tr>
<td>Significant apnoea</td>
</tr>
</tbody>
</table>

Table 2 Signs of severely ill child requiring urgent attention

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inappropriate drowsiness (difficult to rouse)</td>
</tr>
<tr>
<td>Agitation</td>
</tr>
<tr>
<td>Cyanosis in air</td>
</tr>
</tbody>
</table>

Table 3 Signs of increased work of breathing

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased respiratory rate</td>
</tr>
<tr>
<td>Chest in-drawing</td>
</tr>
<tr>
<td>Nasal flaring</td>
</tr>
<tr>
<td>Tracheal tug</td>
</tr>
<tr>
<td>Use of accessory muscles</td>
</tr>
<tr>
<td>grunting</td>
</tr>
</tbody>
</table>
Table 4 Assessment of severity of breathing difficulty adapted from WHO management of acute respiratory infections in children. World Health Organisation, Geneva, 1995

<table>
<thead>
<tr>
<th>Assessment of severity (breathing difficulty)</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen saturation in air</td>
<td></td>
<td>92-95%</td>
<td>&lt;92%</td>
</tr>
<tr>
<td>Chest wall in-drawing</td>
<td>none/mild</td>
<td>moderate</td>
<td>severe</td>
</tr>
<tr>
<td>Nasal flaring</td>
<td>absent</td>
<td>may be present</td>
<td>present</td>
</tr>
<tr>
<td>grunting</td>
<td>absent</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Apnoea/pausing</td>
<td>normal</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>Feeding history</td>
<td>normal</td>
<td>Approximately half of normal intake</td>
<td>Quantity, half normal</td>
</tr>
<tr>
<td>Behavior</td>
<td>normal</td>
<td>irritable</td>
<td>Lethargic Unresponsive Flaccid Decreased level of consciousness Inconsolable</td>
</tr>
</tbody>
</table>
Table 5 Symptoms of Serious Illness (adapted from Viral Upper Respiratory Tract Guideline by Institute for Clinical Systems Improvement and the WHO recommendations on the management of children with cough or breathing difficulty)

<table>
<thead>
<tr>
<th></th>
<th>&lt; 3 months</th>
<th>3 months - 3 years</th>
<th>4 years-adult</th>
</tr>
</thead>
</table>
| **Responsiveness and activity** | Flaccid  
Cannot awaken or keep awake  
Weak cry or weak suck  
Inconsolable  
Refuse feedings | Responsiveness and activity  
Unresponsive  
Cannot awaken or keep awake  
Markedly decreased activity  
Inconsolable  
Weak suck or weak cry(if infant)  
Refuses feeding | Responsiveness and activity  
Decreased level of consciousness  
Markedly decreased activity  
Cannot awaken or keep awake |
| **Dehydration and vomiting** | reduced wet nappies > 8 hrs | Dehydration and vomiting  
o no urine > 6-8 hrs if < 1yr  
o no urine > 12 hrs if > 1yr | Dehydration and vomiting  
o no urine > 12 hrs |
| **Meningeal signs** | stiff neck  
persistent vomiting | | Meningeal signs  
stiff neck  
persistent vomiting  
severe headache |
| **Other** | petechial and purpuric rash  
convulsions  
very high fever  
hypothermia  
capillary refill < 3 sec | Other  
petechial or purpuric rash  
convulsions  
very high fever  
unresponsive to treatment  
capillary refill < 3 sec | Other  
decreased urination with decreased intake  
petechial or purpuric rash  
convulsions  
very high fever  
unresponsive to treatment  
capillary refill > 3 sec |
Table 6 Factors contributing to the clinicians decision regarding admission or discharge

<table>
<thead>
<tr>
<th>Complicating Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-morbidity e.g. prematurity, congenital heart disease, any chronic lung disease, neurological disorder</td>
</tr>
<tr>
<td>Social problems e.g. previous non-accidental injury, ill parents, parents having difficulty coping</td>
</tr>
<tr>
<td>Infants younger than 2 months of age</td>
</tr>
</tbody>
</table>

Table 7 Severity of Asthma, taken from BTS

<table>
<thead>
<tr>
<th>Table of Severity of Asthma Based on BTS Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Mild to Moderate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Moderate to Severe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Life Threatening</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
**Table 8 Infants at risk of developing severe bronchiolitis- (adapted from Management of acute bronchiolitis by Rakshi and Couriel, Archives of Disease in Childhood, 1994; 71:463-469)**

<table>
<thead>
<tr>
<th>Apnoea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm birth</td>
</tr>
<tr>
<td>Underlying disorders</td>
</tr>
<tr>
<td>Lung disease e.g. bronchopulmonary dysplasia, cystic fibrosis</td>
</tr>
<tr>
<td>Congenital heart disease</td>
</tr>
<tr>
<td>Immunodeficiency (congenital or acquired)</td>
</tr>
<tr>
<td>Multiple congenital abnormalities</td>
</tr>
<tr>
<td>Severe neurological disease</td>
</tr>
</tbody>
</table>

**Table 9 Indications for treatment with parenteral antibiotics in a child clinically suspected to have pneumonia**

<table>
<thead>
<tr>
<th>Toxic appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe respiratory distress</td>
</tr>
<tr>
<td>Vomiting</td>
</tr>
<tr>
<td>Immunocompromised</td>
</tr>
<tr>
<td>Dehydrated and requiring intravenous fluids</td>
</tr>
</tbody>
</table>

**Table 10 Differential diagnosis of less obvious causes of respiratory distress (Adapted from Fleischer's Textbook of Emergency Medicine, Chapter 65)**

<table>
<thead>
<tr>
<th>Metabolic Disorders</th>
<th>Central Nervous System Dysfunction</th>
<th>Neuromuscular Disorders</th>
<th>Chest Wall Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>Meningitis</td>
<td>Spinal cord injury</td>
<td>Flail chest</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Encephalitis</td>
<td>Infantile botulism</td>
<td>Congenital anomalies</td>
</tr>
<tr>
<td>Sepsis</td>
<td>Tumour</td>
<td>Guillian-Barre</td>
<td></td>
</tr>
<tr>
<td>Liver/renal disease</td>
<td>Intoxication</td>
<td>Myopathy</td>
<td></td>
</tr>
<tr>
<td>Intoxication</td>
<td>Status epilepticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inborn errors of metabolism</td>
<td>Trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrocephalus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1
Glossary of definitions and abbreviations
Definitions

Child
Every human being below the age of 18 years unless the law applicable to the child is attained earlier [United Nations 1991]

Clinical practice guideline
Systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances [Institute of Medicine 1992].

Evidence-based guidelines
Clinical practice guidelines based on a systematic review of scientific data [NHMRC: Quality of Care and Health Outcomes Committee 1995]

Consensus-based methods
Clinical practice guidelines based on a consensus of expert opinion [NHMRC: Quality of Care and Health Outcomes Committee 1995]

Evidence based medicine
The integration of best clinical evidence from systematic research with clinical experience and patient values to make decisions about the individual patient's care [Sackett et al 2000].

Consensus methods
Methods used to determine the extent to which experts or lay people agree about a given issue [Mays and Pope 1996]
**Acute breathing difficulty**

Any unusual pattern of breathing. Mothers may describe it in different ways. For example, they may use the terms 'noisy', 'fast', or 'interrupted' [World Health Organisation, outpatient management of acute respiratory infections in children 1995].

**Stridor**

Limitation of airflow in the upper airway at the larynx or tracheal level. It is a harsh or rasping respiratory noise reflecting upper airway obstruction, usually inspiratory but may be biphasic (consensus).

**Wheeze**

Limitation of airflow in the lower airway. It is a high pitched whistling noise heard on auscultation which is usually more pronounced in the expiratory phase indicating intrathoracic airway obstruction (consensus).

**Stirtor**

Airway generated sound caused by obstruction at pharyngeal level e.g due to large tonsils.

**Bronchiolitis**

A seasonal viral illness characterised by fever, nasal discharge and dry wheezy cough. On examination there are fine inspiratory crackles and/or high pitched expiratory wheeze (consensus).
## Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&amp;E</td>
<td>Accident and emergency</td>
</tr>
<tr>
<td>ENT</td>
<td>Ear, nose and throat</td>
</tr>
<tr>
<td>AGREE</td>
<td>Appraisal of guidelines for research and evaluation instrument</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guideline Network</td>
</tr>
<tr>
<td>RCPCH</td>
<td>Royal College of Paediatrics and Child Health</td>
</tr>
<tr>
<td>Scharr</td>
<td>School of Health and Related Research</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>BTS</td>
<td>British Thoracic Society</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute of Clinical Excellence</td>
</tr>
<tr>
<td>ESR</td>
<td>Erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest x-ray</td>
</tr>
<tr>
<td>URTI</td>
<td>Upper respiratory tract infection</td>
</tr>
<tr>
<td>PICU</td>
<td>Paediatric intensive care unit</td>
</tr>
<tr>
<td>HDU</td>
<td>High dependancy unit</td>
</tr>
<tr>
<td>ABC</td>
<td>Airway, breathing circulation</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>PEFR</td>
<td>Peak expiratory flow rate</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence based medicine</td>
</tr>
<tr>
<td>BPA</td>
<td>British Paediatric Association</td>
</tr>
<tr>
<td>AHCPRAHCP</td>
<td>US Agency for Health Care Policy and Research</td>
</tr>
</tbody>
</table>
Appendix 2

References
References


Armon K., Stephenson T et al. (2001a). “Determining the common presenting problems to paediatric accident and emergency.” Archives of Disease in Childhood 84:


Cincinnati Medical Center Children's Hospital (1998). “Evidence based guidelines for the management of infants one year of age or less with a first time episode of bronchiolitis.” National Clearing House.


MacFaul R and Werneke U. Risk of presenting problems for illness in district general hospitals (unpublished)


Royal College of Paediatrics and Child Health (2001). *Paediatrics and Child Health- the next 10 years. An overview of "strengthening the care of children in the community and looking ahead"*. RCPCH Spring Meeting, York.


