This summary is based on published and pre-print studies identified in our rapid review. As evidence is rapidly emerging the content of this page will be reviewed and updated regularly. As of 1 July 2020 we have refined our search process to update the summary with studies considered to be good quality or of high impact.
The evidence found during the initial six-month period can be downloaded below together with search strategies and inclusion criteria used to identify papers during both periods.
This summary was last updated on 22 December 2020.
To get an email notification of updates to this page, log in and click or tap on the pink button in the grey box above, 'Notify me when updated'.
Note: Some included studies, indicated in the reference list [*], provide preliminary findings that have not yet been certified by peer review; these findings should be treated with due caution.
Epidemiology
Can children and young people suffer from COVID-19 disease?
COVID-19 disease has been reported in children and young people of all ages, including shortly after birth.1 2 3 There have been far fewer confirmed cases of COVID-19 disease in children than adults (children consistently make up 1-5% of total case numbers in reports).4 5 6 7 8 9 10 11 12
Publications about acute infection suggest that there are comparatively few children infected by SARS-CoV-2 and thus suffering from COVID-19 disease in the community.4 12 13 14 15 Community surveillance systems suggest teenagers are more susceptible to COVID-19 disease than younger children.12 16
Does COVID-19 affect children and young people in the same way as adults?
Infection with SARS-CoV-2 appears to take a milder course in children than in adults: most infected children present with mild symptoms or are asymptomatic,1 4 8 12 17 18 19 20 21 22 23 and very few (c. 1%) develop severe or life threatening disease.9 24 25 26 27 In the absence of widespread community or serological testing, it is uncertain what the proportion with sub-clinical symptoms is.
Within households, secondary attack rates in children have generally been shown to be lower than in adults, suggesting that they have a reduced susceptibility to infection.28 29 30 It is speculated that differences in the expression of Angiotensin Converting Enzyme 2 Receptor may play a role in altering the susceptibility of children to infection.31 32
More recently, understanding of the adaptive immune response to SARS-CoV-2 has been progressed. A UK study has shown that children not previously infected with SARS-CoV-2 have much higher levels of cross-reactive IgG antibodies between “common cold” human coronaviruses and SARS-CoV-2 compared to young adults.33 Differences in antibody response to SARS-CoV-2 infection have been shown with young children having higher anti-S IgG antibodies compared to teens (the S protein of SARS-CoV-2 binds to the cellular receptor for viral entry to the cell) and increasing levels of anti-N IgG antibody with age.34 N protein release requires lysis of infected cells so lower levels of anti-N antibody may reflect the milder disease course in children. Understanding the antibody response in different age groups is important when considering how to screen for previous exposure to SARS-CoV-2 and to gain more complete understanding of the epidemiology of the disease. At this point in time the clinical utility of antibody testing is unclear.
Deaths in children due to COVID-19 have been extremely rare: mortality seems to be consistent at around 0.01-0.1% (similar to the incidence seen every year with seasonal influenza).12 17 24
What role does ethnicity have in COVID-19 infection?
The impact of ethnicity in COVID-19 infection has not been fully elucidated. However, it has been noted that a high proportion of neonates affected by COVID-19 infection are from Black, Asian or minority ethnic groups.35 The largest UK study of children with COVID-19 in hospital found that children of Black ethnicity were over-represented compared to the population representation and that Black ethnicity was associated with an increased likelihood of requiring critical care admission.36 A US study 0f 135 800 children found that whilst children of black and Hispanic ethnicity were less likely to have undergone testing for SARS-CoV-2 than Caucasian children, when they were tested they were more likely to be SARS-CoV-2 positive.37 It was found that 69% of children with Paediatric Inflammatory Multisystem Syndrome (PIMS-TS) in the UK were of Black or Asian race.38 The reasons for these differences are not clear, either within the context of the UK or globally. Further work to understand the role of ethnicity is required.
Transmission
Are children as likely as adults to acquire COVID-19?
Evidence suggests that children may be less likely to acquire the disease.4 13 14 24 39 40 41 42 43 44 45 46 47 48 49 50 51 This is supported in countries that have undertaken widespread community testing, where lower case numbers in children than adults have been found.4 14 16 52 53 Between 16 January and 3 May 2020, 35,200 children in England were swabbed for SARS-CoV-2 and 1408 (4%) were positive. Children under 16 years old accounted for only 1.1% of positive cases.51
Can children transmit the virus?
The importance of children in transmitting the virus is difficult to establish, particularly because of the number of asymptomatic cases,54 55 but there is some evidence that their role in transmitting the virus is limited16 56 57 58 and older ‘index case’ age has been associated with an increased rate of secondary infections.28 59 Early studies of multiple family clusters have revealed children were unlikely to be the index case, in Guangzhou, China, Israel and other countries.45 60 61 62 63 64 65 A SARS-CoV-2 positive child in a cluster in the French Alps did not transmit the virus to anyone else, despite exposure to more than 100 people.66
In the Netherlands, separate data from primary care and household studies suggests SARS-CoV-2 is mainly spread between adults and from adult family members to children, this is supported by a similar Greek study.15 29
An epidemiological study where 1155 contacts of six COVID-19 positive cases in an Irish school were screened, there was no evidence of secondary transmission of COVID-19 from children to other children or adults, with the findings mirrored in a study from Singapore.67 68 A German study screened contacts of 137 children who attended school for at least one day when presumed infective (i.e. one day before symptoms started), before the child isolated. Six index cases were found to have infected 11 additional pupils, with no onward transmission identified for the other 131 children who attended school.69
However, viable SARS-CoV-2 virus has been isolated from symptomatic children with COVID-1970 and there is some evidence of transmission from asymptomatic children to others.13 45 Analysis of large outbreaks of COVID-19 disease in summer camps were unable to differentiate between transmission from adults to children and between children themselves, but up to 90% of exposed attendees who had not previously had COVID-19 contracted the virus.71 72 It is likely that multiple chains of contact account for the high infection rates and supports the notion of limiting contact outside classrooms and having “bubbles” for schools, to reduce the exposure of individuals to the virus.
Fastidious additional measures including daily temperature checks, face-masks at all times, desk spacing, half-day schooling and staggered arrival and departure time have been cited as interventions which may have resulted in low transmission rates in Hong Kong.73 This is supported by an Israeli study into a secondary school outbreak of two separate cases of COVID-19 in students, 13.2% of students and 16.6% of staff subsequently tested positive for SARS-CoV-2. Untangling the modes of transmission (increased community spread due to loosening of lockdown restrictions vs school contact) was not possible but avoiding poorly ventilated closed spaces, crowded areas and close-contact settings was recommended.74
An Australian study in secondary schools shows a low rate of child to child transmission (0.3-1.2%), with adult to child (1.5%) and adult to adult (4.4%) transmission being more common,75 something which is reflected in other transmission studies.76 Low community prevalence levels in combination with effective contact tracing enabled a rapid response, which may explain why the levels of onward infection appear to be much lower in this study.
Public Health England collected data on transmission related to school settings during June 2020, when a limited number of school years were invited to return to school. Nationally there were 198 confirmed cases related to educational settings and 1.6 million (mainly primary school aged) children were reported to have returned to school. When the index case was a child the maximum number of secondary cases was two, compared to nine when the index case was a staff member. When outbreaks were reported this was significantly associated with increased rates of regional prevalence.77 The data that continue to be published throughout the world demonstrate that children are unlikely to contract COVID-19 from contact within schools and that household transmission is the mode of contact which is most likely to result in the spread of COVID-19.78 79 Overall this is very reassuring for children returning to school but highlights the importance of household isolation when a person within the household is positive for COVID-19.
Importantly for adults aged 65 years and under, living with children of any age is associated with a lower risk of dying from COVID-19 and for adults over 65 years there is no effect on mortality. There is a slight increased risk of developing COVID-19 infection for adults 65 years and under when living with children aged 12-18 years old but this is not associated with needing admission to hospital, ICU or death.80
This summary is based on published and pre-print literature. For up to date ONS data on community prevalence levels please see the Office of National Statistics. This data will be included in the summary if published and added to the medical databases.
What is the duration of viral shedding in nasopharyngeal or throat swabs?
The duration of viral shedding (in naso-pharyngeal or throat swabs) has been reported in children to range from 6-22 days,81 82 with mean reported at 12 days81 vs. median eight days.82 83 Saliva has been assessed as an alternative method of SARS-CoV-2 detection but is found to be less sensitive than nasopharyngeal or throat swabs.84
Can children transmit the virus through their stool?
Several studies have now shown that SARS-CoV-2 can be detected by PCR in the stool of affected infants for several weeks after symptoms have resolved; faecal swabs have been found to be positive for a longer duration than nasal swabs,82 85 86 with stool shedding reported to be more than 30 days.87 88 89 This has raised the possibility of faecal-oral transmission. Research from Germany did not identify any live, culturable virus in stool despite viral RNA being detectable, suggesting this represents viral debris rather than active virus.90
Subsequent reports, however, indicate that there has been infectious virus in stool identified,91 but how much and how infectious is not yet clear as it is not quantified. This would suggest that faecal-oral transmission theoretically is possible, but we would need more evidence to really know the ramifications of this. Hand hygiene remains essential to reduce the spread of the virus from droplets arising from either the respiratory or GI tract. Further studies are needed.
How does the new variant affect children?
Early genomic data suggests that the SARS-CoV-2 variant is more infectious to the general population. However, there is as yet no evidence of children being more severely affected by this new variant, nor of any increase in PIMS-TS. Currently, there are no published studies of the new variant relating to transmission and prevalence in children.
Clinical features and investigations
What are the symptoms of COVID-19 disease?
Disease presentation can range from no symptoms (asymptomatic) in approximately a third of children to severe pneumonia requiring ITU admission.20 48 49 92 93 94 95 96 97 When there are clinical features, they are non-specific and similar to other viral respiratory infections. The most common presenting features, present in more than 50% of cases, are cough and fever; upper respiratory tract symptoms (such as sore throat and rhinorrhoea) occur in 30-40% of patients; diarrhoea and vomiting present in approximately 10% of cases.1 5 26 27 81 82 88 90 92 95 98 99 100 101 102 103 104 105 106 107 108 109 There are reports of infants presenting with fever but no respiratory symptoms.110 Less commonly reported symptoms include thoracic pains, somnolence, febrile convulsions, lower limb pains22 and ocular manifestations consistent with viral conjunctivitis.111
Differences in immune responses may play a role in influencing the severity of symptoms.112
Please see 'What is PIM-TS' below for further information about the symptoms of the hyper-inflammatory response syndrome.
Are there any signs that could help differentiate COVID-19 from other childhood respiratory viral infections?
There appears to be little in the way of clinical signs in children to differentiate COVID-19 from other childhood respiratory virus infections,113 and COVID-19 has been detected in combination with other viral and bacterial infections.114
There are some cases indicating possible association with skin manifestations115 in patients with suspected or confirmed COVID-19 (but please note, this case series does not describe the age of patients so includes adults), which may persist for some time once other symptoms have resolved and include acral areas of erythema oedema with some vesicles or pustules, other vesicular eruptions, urticarial lesions, other maculopapular lesions, livedo or necrosis. Dermatological exanthem,116 papularmacular117 and chilblain like lesions associated with COVID-19 have also been reported in children.118 119 120 The finding of the presence of SARS-CoV-2 in the endothelium of dermal vessels in skin biopsies of children and adolescents with acute chillblains confirms that these (chillblain) lesions are a manifestation of COVID-19.121
What is PIMS-TS?
An emerging phenomenon of a hyperinflammatory response syndrome, resembling Kawasaki Disease Shock Syndrome (KDSS), was reported in a case study describing a six month old who was treated for Kawasaki Disease (KD) and then subsequently was found to test positive for SARS-CoV-2.122 Further studies were reported in the UK,123 124 including a case series indicating that it can mimic appendicitis, with inflammation of the terminal ileum,125 Italy126 127 and France,128 as well as the US107 129 130 131 132 133 and Luxembourg.134
The RCPCH have produced a case definition for the Paediatric inflammatory multisystem syndrome - temporally associated with SARS-CoV-2 (PIMS-TS) which can be found here. The CDC have subsequently named the same syndrome Multisystem Inflammatory Syndrome in children (MIS-C) with a slightly different case definition.
Symptoms reported include abdominal pain, vomiting and diarrhoea, with persistent high-grade fever and frequently progress to shock with cardiac involvement requiring ICU admission for inotropic support, mechanical ventilation and, in a small number of patients, ECMO.38 131 135 136 137 138 Children tend to have high inflammatory markers, cardiac involvement,138 139 140 e.g. myocarditis,141 macular papular rashes, non-suppurative conjunctivitis and encephalopathy.38 142 143 There have been a handful of fatalities reported.138 144
Children with PIMS-TS/MIS-C have been treated with supportive care only, IVIg, IV corticosteroids, anakinra, infliximab, tocilizumab, siltuximab and rituximab but the current indications for each therapy are not currently clear.38 131 132 145 146 Coronary artery aneurysms have been described in up to 40% of children with PIMS-TS,38 131 138 with this appearing to be more common in children admitted to PICU.145 Routine screening for coronary artery aneurysms is recommended at one to two weeks and four to six weeks after presentation.131
A possible temporal association with SARS-CoV-2 infection has been hypothesised because many children that were tested for SARS-CoV-2 infection were either positive by PCR or serology.145 The first epidemiological surveillance study of PIMS-TS in France supports a casual link with COVID-19 following four-five weeks behind the clinical illness147 and a further analysis of temporal causality suggests that viral infections including SARS-CoV-2 are associated with the diagnosis of KD.148
One of the most detailed reports of 58 children diagnosed with PIMS-TS demonstrate that it can have a wide spectrum of symptoms, signs and severity and overlap with KD, KDSS and toxic shock syndrome (TSS). Differences in clinical and laboratory profile compared with KD, KDSS and TSS suggest that PIMS-TS is a unique entity, potentially arising from a maladaptive acquired immune response to the SARS-CoV-2 infection.38 149
The centre for disease control analysed 570 patients with MIS-C and, using latent class analysis to group the patients according to their symptoms, found three clusters. The first (36%) were an older group (median age nine years) with multi-organ involvement, particularly cardiovascular and gastro-intestinal, with very few fulfilling the diagnostic criteria for Kawasaki Disease. There was a high proportion of children with shock in this group and there was a mortality rate of 0.5%. The second (30%) had primarily respiratory symptoms in-keeping with acute COVID-19 infection and there was a case fatality rate of 5.8%. The third cluster (35%) were younger (median six years) and predominately associated with mucocutaneous lesions and rash. These children were less likely to have cardiovascular involvement.150 Coronary artery dilatation or aneurysms were seen in all three groups, highlighting the need for echocardiogram as part of the assessment of these children. Routine cardiac MRI after recovery from PIMS-TS did not show persistent myocardial dysfunction in a small study of five patients.151
Further information can be found on the management of children presenting in this manner. The document details information on how to include cases you might be managing into research studies, including ISARIC-CPP/UK, DIAMONDS and the RECOVERY trial.
Are children from a BAME background at a higher risk of severe disease from acute COVID-19 infection?
Children from a BAME background seem to be at higher risk of severe disease from acute COVID-19,36 152 which is consistent with adult literature. BAME children are significantly over-represented in case reports/series of PIMS-TS.38 127 153 Also see the Epidemiology section to see the role of ethnicity in infection.
How long after being exposed to SARS-CoV-2 does a child develop symptoms?
The assumed incubation period (time from exposure to index case to developing symptoms) varies in different studies: it has been reported to be between 2-10 days, with median (and mode) of seven days,87 vs. 24h – 28d,105 vs. mean of 10 days (IQR 7.75 – 25.25).104
Can a child be asymptomatic but still have COVID-19?
Yes, there are reports of asymptomatic cases with positive laboratory confirmed COVID-19.12 17 23 26 60 99 154 155 In the absence of widespread community or serological data, the proportion of children who do not have any symptoms or have sub-clinical symptoms is unclear, but it is likely to be around a third of infected children.55 156 Testing of 120 asymptomatic cancer patients in a US cancer centre revealed 2.5% to be positive (vs. 14.7% of their care givers).44
What are blood and imaging tests of children with COVID-19 likely to show?
Laboratory findings are non-specific, and often normal. They may include slightly elevated inflammatory markers including c-reactive protein,26 and raised liver transaminases.81 99 157 Lymphocytopenia is seen,3 105 158 but more children appear to have raised or normal lymphocyte counts.61 81 94 95 99 159 160
Radiological investigations in infected children can be normal in up to 10%, and is associated with mild disease not requiring PICU.81 103 106 Common abnormal findings include increased peribronchovascular markings, bronchial thickening (58%), consolidation (35%), ground glass opacities (19%) and interstitial changes (16%). Pleural effusion, pneumothorax and atelectasis are uncommon features of COVID-19.22 81 98 99 106 158 161 162 163 164 165 These findings are non-specific and do not enable radiological differentiation between COVID-19 and other respiratory viruses, which have a similar picture.166
Computed Tomography (CT) of the chest has been used as a rapid diagnostic tool by some centres and, when performed, over 90% are reported to have features of lower lobe ground glass opacification (88%) and consolidation (58%). It is worthwhile noting that CTs were performed on a selective group of patients, are not recommended as a method of diagnosing COVID-19 and should be reserved for complex cases.165 CT changes have been reported in asymptomatic positive children.159
There are several cases of reported co-infection of SARS-CoV-2 and other respiratory viruses, which illustrates that the identification of another respiratory pathogen should not preclude SARS-CoV-2 testing in children.
If a swab is negative for COVID-19 infection is it possible that a child has COVID-19 infection?
We know that virtually no test is perfectly sensitive (correctly picks up all people with the disease) or specific (correctly picks up all people who don’t have the disease) and the same is true for COVID-19.167 The test that is used to confirm whether someone has COVID-19 infection or not uses swabs from the back of the nose and throat. These are used to look for COVID-19 genetic material in the cells that have been picked up, using a technique called reverse transcriptase polymerase chain reaction (RT-PCR). It is possible to still have COVID-19 infection even if the RT-PCR does not detect COVID-19 genetic material, particularly very early or very late in the disease.168
At risk groups
Are there any groups that are at higher risk of developing severe COVID-19 illness?
There is some evidence reflecting a small increased risk of children with comorbidities needing hospitalisation or intensive care admission from COVID-19.169 170 A national Italian study of 3836 cases reports a mortality rate of 0.1% with all children who died having co-morbidities.12 Reports of children with immunosuppression or cancer therapy have not shown it to be a significant risk factor for severe disease.171 172 173 174 175 176 177 178 179 180 Contact tracing on a dialysis unit who had contact with a member of staff who tested positive found three children to be positive, but only one had symptoms.181 A case report of a child with cystic fibrosis who contracted COVID-19 from his grandfather, identified though contact tracing, also remained asymptomatic.182 There is a case report of COVID-19 pneumonia triggering acute chest syndrome in an adolescent with known sickle cell disease on daily hydroxyurea.183
A European study of 37 asthma centres reported no children with severe asthma being admitted to hospital with COVID-19. Four of the countries included in the study, including the UK, had recommended shielding for children with severe asthma, however the other twenty-one countries had not, suggesting that severe asthma is not a risk factor for severe COVID-19 infection.184
On screening patients and caregivers with cancer in one of the largest paediatric cancer centres in the US, 20 of 178 paediatric patients tested positive. Only one (5%) required hospitalisation for symptoms of COVID-19, with none requiring critical care.44
CDC data from the USA reports that a high proportion of cases needing admission had at least one co-morbidity (most commonly respiratory).5 Further data from Italy20 and the US107 185 also finds that children with co-morbidities are over represented in those admitted to hospital, though most were reported to have mild illness. Children under one year of age appear to be more likely to be admitted to hospital with COVID-19 than those in older age groups.5 12 155 186 187
The USA has reported only 121 out of a total of 190,000 deaths associated with SARS-CoV-2 in people under 21 years of age until 31 July 2020. Of these 121, 70% occurred in children aged 10-20 years old (41% of the total were 18 years and above); with 74% in children of Hispanic or Black ethnicity. It was found that 75% of the children who died had co-morbidities which included asthma, obesity, neurological and cardiac conditions.188 The contribution of SARS-CoV-2 to death is unclear in this study, 35% of the total deaths occurred before the child or young person/adult could be admitted to the Hospital. There were 15 cases which met the definition for the multisystem inflammatory syndrome in children.
A UK study of 651 hospitalised children with COVID-19 found that six children died and all had significant severe co-morbidities.36
The RCPCH have provided guidance for the need for shielding in certain groups. This guidance continues to be reviewed as new evidence emerges.
What are the characteristics of children admitted to PICU?
Severe illness is far less frequent in children than adults, but it is still significant in a very small number of children and young people.36 189 Most studies describing severely unwell children combine those who are on PICU with either SARS-CoV-2 infection with those who have PIMS-TS. Approximately 20% of hospitalised children with COVID-19 require PICU admission, 8% require inotropic support and 9% require respiratory support.36 Extra-corporeal membrane oxygenation has been used in a very small number of children with COVID-19 (approximately 2% of children admitted to PICU).190
Age: Children who have been admitted to PICU have been seen in two peaks - premature babies and those under one month of age and older children who are more commonly diagnosed with PIMS-TS.36
Co-morbidities: up to three quarters of children admitted to PICU have a co-morbidity and children with co-morbidities are more likely to require ventilation.93 191 The literature suggests that children may be at higher risk of requiring PICU admission if they are medically complex; have long-term dependence on technological support including tracheostomy; have developmental delay; have genetic abnormalities; have respiratory co-morbidity; have cardiac co-morbidity or are obese.36 190 Children who are positive for SARS-CoV-2 have also been admitted to PICU for potential sequelae of the infection including diabetic ketoacidosis and status epilepticus.192
Ethnicity: Children of black ethnicity have been noted as being over-represented compared to the general population for both the requirement to be admitted to hospital and the requirement for PICU care.36 The reasons for this are not clear.
Presentation: Children presenting to hospital with pyrexia, symptoms and signs of lower respiratory tract infection, acute respiratory distress syndrome or radiological evidence of pneumonia are noted to be more likely to require PICU admission.27
Co-infections: Viral co-infection has been cited as a potential risk factor for PICU admission.27
The overall English mortality rate in children with confirmed SARS-CoV-2 on RT-PCR is 0.3% (eight children), half of whom who had multiple co-morbidities and the other half who died of other causes with SARS-CoV-2 as an incidental or indirect contributor to death.51
In summary, studies from PICU admissions in Europe and the USA have found that those with comorbidities are over-represented, most commonly respiratory, complex neurodisability – groups which are otherwise at increased risk of complications from all respiratory viruses.193 It is not clear if the SARS-CoV-2 infection was causal, contributary or incidental to the ICU admission (or even acquired after PICU admission). The rates of complications from SARS-CoV-2 infection do not appear disproportionate to those from other respiratory viruses in this early data.194
Neonatal
Are neonates at increased risk of severe disease?
Many case reports/series have been published looking at the outcomes of pregnant mothers with COVID-19 and their newborn babies. Mothers and their babies in general appear to do well, with few reports of neonates requiring NICU admission.195 196 Early studies suggested that neonates without comorbidities are not at an increased risk of severe disease.197 198 199 However, recent European and UK studies have reported that age under one month and prematurity are risk factors for PICU admissions.27 35 36 It is noted in a series of four neonates infected after birth that half had additional infections and highlights the importance of screening for additional infections.200
Can COVID-19 increase the risk of pre-term birth, if the mother acquires it in the late second or third trimester?
There is a small increase in the rates of preterm or earlier birth201 and signals of an increase in the rates of foetal loss/stillborn delivery.202 203 204 205 206
Can the virus be transmitted vertically?
The vast majority of newborns have not acquired COVID-19 themselves and not had adverse outcomes after maternal COVID-19.172 173 204 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 However, a systematic review reveals that SARS-CoV-2 has been isolated from the placenta, cord blood, rectal and nasopharyngeal swabs of a small proportion of babies born to mothers with 3rd trimester COVID-19,223 suggesting that vertical transmission, whilst rare, can occur.224 225
There are a few cases of infants delivered to COVID-19 positive mothers, who have elevated SARS-CoV-2 IgM after birth, which may indicate intrauterine transmission but this is not clear because these babies tested negative on swab PCR and false positives with IgM are not uncommon.226 227 There have also been cases of newborns and very young infants testing positive shortly after birth (including several202 228 229 at or before 12 hours of age)2 198 230 however they have not suffered any known significant complications of the disease and mostly required minimal respiratory support. There is evolving evidence that neonates born to mothers who have had COVID-19 in the last two months of pregnancy have both passive and active immunity to SARS-CoV-2 but this may only last for a few weeks after birth.231 Current evidence supports the WHO guidance that babies born to mothers who have COVID-19 are very unlikely to contract the virus or to develop severe illness if they do so.232 It is therefore recommended that mothers should be supported to have skin-to-skin contact with their baby and to share a room.35
Can the virus be transmitted or through breast milk?
Many reports of breast milk from COVID-19 positive mothers found that the breastmilk tested negative for COVID-19.3 173 199 219 233 234
There are a small number of reports of viral RNA being found in breast milk,235 236 but it is unclear if this positive result reflects live, infectious virus and whether the source was the mother or infant who subsequently tested positive for the virus.
Subsequent data suggests pasteurisation eliminates the virus from breast milk and also that PCR positive breast milk does not seem to represent live, replicating virus.237 Further large scale studies are needed to draw firm conclusions.
Interestingly, antibody testing of breastmilk collected in 2018 has shown cross-reactivity with SARS-CoV-2 antibody and mothers who have had symptoms of COVID-19 have higher levels of SARS-CoV-2 S1+S2 reactive IgA and IgM in their breastmilk. Mothers who were vaccinated and are vaccinated against Influenza have also been shown higher antibody levels.238 The protective implications of this are not yet clear for neonates but the data supports encouraging breastfeeding and highlights the importance of maternal vaccination.
WHO continues to recommend breastfeeding with appropriate precautions for COVID-19 positive mothers.
Does having COVID-19 in pregnancy cause any long-term problems for the baby?
We do not currently have sufficient evidence to draw conclusions on this.
Therapeutics
What treatments are available for children with COVID-19?
For those without severe disease, which will be most children, supportive management (ensuring oxygenation, hydration and nutrition) is appropriate. For more information, please see the RCPCH guidance on the clinical management of children admitted to hospital with suspected COVID-19.
There are many ongoing studies; within the UK, there is the RECOVERY trial which is now recruiting neonates and children who are severely unwell with COVID-19.
Currently, children with an acute respiratory presentation of COVID-19 can be recruited to arms of ‘no additional treatment’ or Azithromycin and/or convalescent plasma. Children can then go on to be randomised in the second stage intervention of Tocilizumab or no additional treatment if they do not improve.
The RECOVERY trial is now also open for children with PIMS-TS. There are two tiers of randomisation. The first allows the comparison of high dose steroids to no additional treatment (in the presence and absence of IVIg) and IVIg to no additional treatment (in the presence and absence of steroids). This will enable investigators to use steroids or IVIg as standard care if necessary, but also recruit children with moderate disease who may not require additional treatment. The second tier of randomisation compares Tocilizumab to no additional treatment for children deemed eligible for biological therapy. As the trial is open label, children who do not receive Tocilizumab can be given another biological agent such as Anakinra or Infliximab.
What studies are enrolling children currently to therapeutic trials?
For those who develop more severe or critical illness (RCPCH treatment criteria), please consider enrolment in the RECOVERY trial. This study is open at many sites including hospitals with and without on-site PICU, and from 11 May will be including children down to those just born. It also includes those with PIMS-TS.
If you are considering entering a child to RECOVERY, we suggest you check with your Regional Infectious Disease team and watch the relevant video(s) and view the FAQs on the study website. Please note that there are separate training videos in respect to children and infants of less than 29 days of age. If you are still uncertain about eligibility, there is the possibility for you to contact an 'on-call' member of the study team to discuss further, but please only do this if you are particularly uncertain.
If you think entry into RECOVERY is indicated, it can take place in the hospital where the child is admitted - you don't have to wait for them to be transferred to a regional centre.
Is it safe to give ibuprofen to a child who has tested positive for COVID-19 or is highly likely to be positive?
There is currently insufficient evidence to establish a link between use of ibuprofen, or other non-steroidal anti-inflammatory drugs (NSAIDs), and contracting or worsening of COVID-19. Whilst an early report suggested ibuprofen was associated with poorer outcomes, subsequent work has not supported this. The RCPCH has made a statement about the use of ibuprofen in suspected/confirmed COVID-19. It remains a very powerful, safe and effective medicine for reducing fever and pain in infants, children and young people and adults.
Is there an effective vaccine?
Vaccines will hopefully provide protection against future outbreaks of COVID-19, though these are still early in the drug development pipeline and unlikely to be available this year.
Prognosis
What is the prognosis of a child who has had COVID-19?
The short-term prognosis in those who recover appears to be good with both infants239 and children largely appearing to make a full recovery.26 240
Are there any long-term complications (in specific groups) such as reduced exercise tolerance, developmental delay, or worsening of cardiac function?
A small publication of children without serological evidence of SARS-CoV-2 infection has suggested that some children may go on to have long-term effects after COVID-19.241 However, we do not currently have sufficient evidence to draw any conclusions on this.
Summary
In children, the evidence is now clear that COVID-19 is associated with a considerably lower burden of morbidity and mortality compared to that seen in the elderly. There is evidence of critical illness and death in children, but it is rare.
There is also some evidence that children may be less likely to acquire the infection. The role of children in transmission, once they have acquired the infection, is unclear, although there is no clear evidence that they are any more infectious than adults.
Symptoms are non-specific and most commonly cough and fever. Laboratory and radiological investigations may be normal or mildly altered.
There is some possible evidence of infection in newborns which could indicate vertical transmission, but it is not clear if this is intrauterine or perinatal. Early evidence suggests both infected mothers and newborns are not particularly more severely affected than other groups.
Children with co-morbidities, notably respiratory and complex neurodisability, appear more likely to suffer complications and need hospital +/- PICU admission, but not obviously more than would be expected from infection with other respiratory viruses.
Several reports document significant morbidity and mortality as a consequence of the pandemic;242 243 although this has not been universal.244
Next steps
We will continue to collate and summarise the evidence around COVID-19 and children and young people as it emerges, in partnership with The Don’t Forget the Bubbles team. A comprehensive summary of all the papers identified on COVID-19 and children published to date is hosted by Don’t Forget the Bubbles.
References
- 1. a. b. c. Qiu H, Wu J, Hong L, et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. The Lancet Infectious Diseases. 2020. www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30198-5/fulltext
- 2. a. b. Yu N, Li W, Kang Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. The Lancet Infectious Diseases. 2020. www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30176-6/fulltext
- 3. a. b. c. Zeng L, Xia S, Yuan W, et al. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2763787
- 4. a. b. c. d. e. Choe YJ. Coronavirus disease-19: The First 7,755 Cases in the Republic of Korea. Osong Public Health and Research Perspectives. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7104685/
- 5. a. b. c. d. CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children - United States, February 12-April 2, 2020. MMWR Morbidity and mortality weekly report. Centers for Disease Control and Prevention. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6914e4.htm
- 6. Tagarro A, Epalza C, Santos M, et al. Screening and Severity of Coronavirus Disease 2019 (COVID-19) in Children in Madrid, Spain. JAMA Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2764394
- 7. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. Jama. 2020. jamanetwork.com/journals/jama/fullarticle/2763401
- 8. a. b. World Health Organisation. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
- 9. a. b. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2762130
- 10. Xiao Z, Xie X, Guo W, et al. Examining the incubation period distributions of COVID-19 on Chinese patients with different travel histories. The Journal of Infection in Developing Countries 2020.jidc.org/index.php/journal/article/view/12718
- 11. de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. The Lancet Infectious Diseases 2020.www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30371-6/fulltext
- 12. a. b. c. d. e. f. g. h. Bellino S, Punzo O, Rota MC, et al. COVID-19 Disease Severity Risk Factors for Pediatric Patients in Italy. Pediatrics. 2020. pediatrics.aappublications.org/content/pediatrics/early/2020/07/16/peds.2020-009399
- 13. a. b. c. Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature Medicine. 2020. www.nature.com/articles/s41586-020-2488-1
- 14. a. b. c. Gudbjartsson D, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic Population. The New England Journal of Medicine 2020.www.nejm.org/doi/full/10.1056/NEJMoa2006100
- 15. a. b. National Institute for Public Health and the Environment. Children and COVID-19. 2020. www.rivm.nl/en/novel-coronavirus-covid-19/children-and-covid-19
- 16. a. b. c. Sun K, Wang W, Gao L, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science. 2020. science.sciencemag.org/content/sci/early/2020/11/23/science.abe2424
- 17. a. b. c. Bi Q, Wu Y, Mei S, et al. Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. Lancet Infectious Diseases 2020.www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30287-5/fulltext
- 18. Kam KQ, Yung CF et al. A well infant with coronavirus disease 2019 (COVID-19) with high viral load. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa201/5766416
- 19. *Tang A, Xu W, Shen M, et al. A retrospective study of the clinical characteristics of COVID-19 infection in 26 children. medRxiv. 2020. www.medrxiv.org/content/10.1101/2020.03.08.20029710v1
- 20. a. b. c. Parri N, Lenge M, Buonsenso D. Children with Covid-19 in Pediatric Emergency Departments in Italy. The New England Journal of Medicine. 2020. www.nejm.org/doi/full/10.1056/NEJMc2007617
- 21. Wu Q, Xing Y, Shi L, et al. Co-infection and Other Clinical Characteristics of COVID-19 in Children. Paediatrics 2020.pediatrics.aappublications.org/content/early/2020/05/04/peds.2020-0961
- 22. a. b. c. Parri N, Magistà AM, Marchetti F, et al. Characteristic of COVID-19 infection in pediatric patients: early findings from two Italian Pediatric Research Networks. European Journal of Pediatrics. 2020. link.springer.com/article/10.1007/s00431-020-03683-8
- 23. a. b. Milani G, Bottino I, Rocchi A, et al. Frequency of Children vs Adults Carrying Severe Acute Respiratory Syndrome Coronavirus 2 Asymptomatically. JAMA Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2770117
- 24. a. b. c. *Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nature Medicine. 2020. www.nature.com/articles/s41591-020-0962-9
- 25. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama 2020.jamanetwork.com/journals/jama/fullarticle/2765184
- 26. a. b. c. d. e. Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. Eurosurveillance 2020; 25(18): 2000600.www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.18.2000600
- 27. a. b. c. d. e. Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. The Lancet Child & Adolescent Health 2020.www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30177-2/fulltext
- 28. a. b. *Madewell ZJ, Yang Y, Longini IM, et al. Household transmission of SARS-CoV-2: a systematic review and meta-analysis of secondary attack rate. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/08/01/2020.07.29.20164590
- 29. a. b. Maltezou HC, Vorou R, Papadima K, et al. Transmission dynamics of SARS-CoV-2 within families with children in Greece: A study of 23 clusters. Journal of Medical Virology. 2020. onlinelibrary.wiley.com/doi/abs/10.1002/jmv.26394
- 30. *Buonsenso D, Valentini P, De Rose C, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in children with household exposition to adults with COVID-19: preliminary findings. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/08/12/2020.08.10.20169912
- 31. Pavel AB, Wu J, Renert-Yuval Y, et al. SARS-CoV-2 receptorACE2 protein expression in serum is significantly associated with age. Allergy. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/all.14522
- 32. Yonker LM, Neilan AM, Bartsch Y, et al. Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses. The Journal of Pediatrics. 2020. www.jpeds.com/article/S0022-3476(20)31023-4/fulltext
- 33. Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020. science.sciencemag.org/content/sci/early/2020/11/05/science.abe1107
- 34. Weisberg SP, Connors T, Zhu Y, et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nature Immunology. 2020. www.nature.com/articles/s41590-020-00826-9
- 35. a. b. c. Gale C, Quigley MA, Placzek A, et al. Characteristics and outcomes of neonatal SARS-CoV-2 infection in the UK: a prospective national cohort study using active surveillance. The Lancet Child & Adolescent Health. 2020. www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30342-4/fulltext
- 36. a. b. c. d. e. f. g. h. i. Swann OV, Holden KA, Turtle L, et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. British Medical Journal. 2020. www.bmj.com/content/bmj/370/bmj.m3249
- 37. Bailey LC, Razzaghi H, Burrows EK, et al. Assessment of 135 794 Pediatric Patients Tested for Severe Acute Respiratory Syndrome Coronavirus 2 Across the United States. JAMA Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2773298
- 38. a. b. c. d. e. f. g. Whittaker E, Bamford A, Kenny J, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2767209
- 39. Jing QL, Lui MJ, Yuan J, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. The Lancet Infectious Diseases. 2020. www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30471-0/fulltext#:~:text=In%20a%20study%20of%20the,of%20primary%20cases%20was%20examined.
- 40. *Mizumoto K, Omori R, Nishiura H. Age specificity of cases and attack rate of novel coronavirus disease (COVID-19). medRxiv 2020.www.medrxiv.org/content/10.1101/2020.03.09.20033142v1
- 41. Zhang J, Litvinova M, Liang Y, et al. . Changes in contact patterns shape the dynamics of the cOVID-19 outbreak in China. Science. 2020. science.sciencemag.org/content/early/2020/05/04/science.abb8001
- 42. Wang Z, Ma W, Zheng X, et al. Household transmission of SARS-CoV-2. Journal of Infection. 2020. www.sciencedirect.com/science/article/pii/S0163445320301699
- 43. COVID-19 National Emergency Response Center. Coronavirus Disease-19: Summary of 2,370 Contact Investigations of the First 30 Cases in the Republic of Korea. Osong Public Health and Research Perspectives. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7104686/
- 44. a. b. c. Boulad F, Kamboj M, Bouvier N, et al. COVID-19 in Children With Cancer in New York City. Jama 2020.jamanetwork.com/journals/jamaoncology/fullarticle/2766112
- 45. a. b. c. Li W, Zhang B, Lu J, et al. The characteristics of household transmission of COVID 19. Clinical Infectious Diseases 2020.www.ncbi.nlm.nih.gov/pmc/articles/PMC7184465/
- 46. National Centre for Immunisation Research and Surveillance. COVID-19 in schools – the experience in NSW. 2020.www.ncirs.org.au/covid-19-in-schools
- 47. Rosenberg ES, Dufort EM, Blog DS, et al. COVID-19 Testing, Epidemic Features, Hospital Outcomes, and Household Prevalence, New York State-March 2020. Clinical Infectious Diseases. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7239264/
- 48. a. b. Yung CF, Kam K, Chong CY, et al. Household Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 from Adults to Children. The Journal of Pediatrics. 2020. www.jpeds.com/article/S0022-3476(20)30852-0/fulltext
- 49. a. b. Torres JP, Piñera C, De La Maza V, et al. SARS-CoV-2 antibody prevalence in blood in a large school community subject to a Covid-19 outbreak: a cross-sectional study. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa955/5869860
- 50. Ding Y, Yan H, Guo W. Clinical Characteristics of Children With COVID-19: A Meta-Analysis. Frontiers in Pediatrics. 2020. www.frontiersin.org/article/10.3389/fped.2020.00431
- 51. a. b. c. Ladhani SN, Amin-Chowdhury Z, Davies HG, et al. COVID-19 in children: analysis of the first pandemic peak in England. Archives of Disease in Childhood. 2020. adc.bmj.com/content/archdischild/early/2020/07/28/archdischild-2020-320042
- 52. *Pagani G, Conti F, Giacomelli A, et al. Seroprevalence of SARS-CoV-2 IgG significantly varies with age: results from a mass population screening (SARS-2-SCREEN-CdA). medRxiv 2020.www.medrxiv.org/content/10.1101/2020.06.24.20138875v1
- 53. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. The Lancet. 2020. www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31483-5/fulltext
- 54. Zimmerman P, Curtis N. Coronavirus infections in children including COVID-19. An overview of the epidemiology, clinical features, diagnosis and prevention options in children. The Pediatric Infectious Disease Journal. 2020. journals.lww.com/pidj/Abstract/onlinefirst/Coronavirus_Infections_in_Children_Including.96251.aspx
- 55. a. b. *Kam K-q, Thoon KC, Maiwald M, et al. SARS-CoV-2 Viral RNA Load Dynamics in the Nasopharynx of Infected Children. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/09/02/2020.08.31.20185488
- 56. Lee EJ, Kim DH, Chang SH, et al. Absence of SARS-CoV-2 Transmission from Children in Isolation to Guardians, South Korea. Emerging Infectious Disease Journal. 2020. wwwnc.cdc.gov/eid/article/27/1/20-3450_article
- 57. Maltezou HC, Magaziotou I, Dedoukou X, et al. Children and Adolescents With SARS-CoV-2 Infection: Epidemiology, Clinical Course and Viral Loads. The Pediatric Infectious Disease Journal. 2020. journals.lww.com/pidj/Fulltext/2020/12000/Children_and_Adolescents_With_SARS_CoV_2.1.aspx
- 58. Pitman-Hunt C, Leja J, Jiwani ZM, et al. SARS-CoV-2 Transmission in an Urban Community: The Role of Children and Household Contacts. Journal of the Pediatric Infectious Diseases Society. 2020. academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piaa158/6007439
- 59. Link-Gelles R, DellaGrotta AL, Molina C, et al. Limited Secondary Transmission of SARS-CoV-2 in Child Care Programs — Rhode Island, June 1–July 31, 2020. Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6934e2.htm?s_cid=mm6934e2_w#contribAff
- 60. a. b. Pan X, Chen D, Xia Y, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. The Lancet Infectious Diseases 2020; 20(4): 410-1.www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30114-6/fulltext
- 61. a. b. Ji LN, Chao S, Want Y, et al. Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World Journal of Pediatrics 2020.link.springer.com/article/10.1007/s12519-020-00356-2
- 62. Song R, Han B, Song M, et al. Clinical and epidemiological features of COVID-19 family clusters in Beijing, China. Journal of Infection. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7177072/
- 63. *Zhu Y, Bloxham CJ, Hulme KD, et al. Children are unlikely to have been the primary source of household SARS-CoV-2 infections. medRxiv. 2020. www.medrxiv.org/content/10.1101/2020.03.26.20044826v1
- 64. Posfay-Barbe KM, Wagner N, Gauthey M, et al. COVID-19 in Children and the Dynamics of Infection in Families. Pediatrics. 2020. pediatrics.aappublications.org/content/early/2020/05/22/peds.2020-1576
- 65. Somekh E, Gleyzer A, Heller E, et al. The Role of Children in the Dynamics of Intra Family Coronavirus 2019 Spread in Densely Populated Area. The Pediatric Infectious Disease Journal 2020.journals.lww.com/pidj/Fulltext/9000/The_Role_of_Children_in_the_Dynamics_of_Intra.96128.aspx
- 66. Danis K, Epaulard O, Benet T, et al. Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa424/5819060
- 67. Heavey L, Casey G, Kelly C, et al. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Euro surveillance. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7268273/
- 68. Yung CF, Kam K-q, Nadua KD, et al. Novel Coronavirus 2019 Transmission Risk in Educational Settings. Clinical Infectious Diseases. 2020. academic.oup.com/cid/article/doi/10.1093/cid/ciaa794/5862649
- 69. Ehrhardt J, Ekinci A, Krehl H, et al. Transmission of SARS-CoV-2 in children aged 0 to 19 years in childcare facilities and schools after their reopening in May 2020, Baden-Württemberg, Germany. Eurosurveillance. 2020. www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.36.2001587
- 70. L’Huillier A, Torriani G, Pigny F, et al. Culture-Competent SARS-CoV-2 in Nasopharynx of Symptomatic Neonates, Children, and Adolescents. Emerging Infectious Disease Journal. 2020. wwwnc.cdc.gov/eid/article/26/10/20-2403_article
- 71. Szablewski CM, Chang KT, Brown MM, et al. SARS-CoV-2 Transmission and Infection Among Attendees of an Overnight Camp — Georgia, June 2020. Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6931e1.htm?s_cid=mm6931e1_w
- 72. Pray IW, Gibbons-Burgener SN, Rosenberg AZ, et al. COVID-19 Outbreak at an Overnight Summer School Retreat ― Wisconsin, July–August 2020. Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6943a4.htm?s_cid=mm6943a4_w
- 73. Fong M, Cowling B, Leung G, et al. Letter to the editor: COVID-19 cases among school-aged children and school-based measures in Hong Kong, July 2020. Eurosurveillance. 2020. www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.37.2001671
- 74. Stein-Zamir C, Abramson N, Shoob H, et al. A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Eurosurveillance. 2020. www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.29.2001352
- 75. Macartney K, Quinn HE, Pillsbury AJ, et al. Transmission of SARS-CoV-2 in Australian educational settings: a prospective cohort study. The Lancet Child & Adolescent Health. 2020. www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30251-0/fulltext
- 76. Lopez A, Hill M, Antezano J, et al. Transmission Dynamics of COVID-19 Outbreaks Associated with Child Care Facilities — Salt Lake City, Utah, April–July 2020. MMWR Morbidity Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6937e3.htm?s_cid=mm6937e3_w
- 77. *Ismail SA, Saliba V, Lopez Bernal JA, et al. SARS-CoV-2 infection and transmission in educational settings: cross-sectional analysis of clusters and outbreaks in England. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/08/24/2020.08.21.20178574
- 78. Wada K, Okabe N, Shobugawa Y. Infection and transmission of COVID-19 among students and teachers in schools in Japan after the reopening in June 2020. BMJ Paediatrics Open. 2020. bmjpaedsopen.bmj.com/content/bmjpo/4/1/e000854
- 79. Yoon Y, Kim K-R, Park H, et al. Stepwise School Opening and an Impact on the Epidemiology of COVID-19 in the Children. Journal of Korean Medical Science. 2020. jkms.org/DOIx.php?id=10.3346/jkms.2020.35.e414
- 80. *Forbes H, Morton CE, Bacon S, et al. Association between living with children and outcomes from COVID-19: an OpenSAFELY cohort study of 12 million adults in England. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/11/02/2020.11.01.20222315
- 81. a. b. c. d. e. f. g. Cai J, Xu J, Lin D, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa198/5766430
- 82. a. b. c. d. De Ioris MA, Scarselli A, Ciofi degli Atti ML, et al. Dynamic viral SARS-CoV-2 RNA shedding in in children: preliminary data and clinical consideration of Italian regional center. Journal of the Pediatric Infectious Diseases Society 2020.academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piaa065/5842265
- 83. Han MS, Choi EH, Chang SH, et al. Clinical Characteristics and Viral RNA Detection in Children With Coronavirus Disease 2019 in the Republic of Korea. JAMA Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2770150
- 84. Chong C, Kam K-Q, Li J, et al. Saliva is not a useful diagnostic specimen in children with Coronavirus Disease 2019. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1376/5905581
- 85. Han MS, Seong MW, Heo EY, et al. Sequential Analysis of Viral Load in a Neonate and Her Mother Infected With Severe Acute Respiratory Syndrome Coronavirus 2. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa447/5820869
- 86. Zhang B, Liu S, Dong Y, et al. Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID-19). Journal of Infection 2020.www.journalofinfection.com/article/S0163-4453(20)30233-4/fulltext
- 87. a. b. Cruz AT, Zeichner SL. COVID-19 in Children: Initial Characterization of the Pediatric Disease. Pediatrics. 2020. pediatrics.aappublications.org/content/early/2020/03/16/peds.2020-0834.1
- 88. a. b. Xu, Y., Li, X., Zhu, B. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine. 2020. www.nature.com/articles/s41591-020-0817-4
- 89. Cai J, Wang X, Zhao J, et al. Comparison of Clinical and Epidemiological Characteristics of Asymptomatic and Symptomatic SARS-CoV-2 Infection in Children. Virologica Sinica. 2020. link.springer.com/article/10.1007/s12250-020-00312-4
- 90. a. b. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature Medicine. 2020. www.nature.com/articles/s41586-020-2196-x
- 91. Xiao F, Sun J, Xu Y, et al. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. Emerging Infectious Disease Journal 2020; 26(8).wwwnc.cdc.gov/eid/article/26/8/20-0681_article
- 92. a. b. Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. New England Journal of Medicine 2020.www.nejm.org/doi/full/10.1056/NEJMc2005073
- 93. a. b. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama. 2020. jamanetwork.com/journals/jama/fullarticle/2764365
- 94. a. b. Canarutto D, Priolo A, Russo G, et al. COVID-19 infection in a paucisymptomatic infant: Raising the index of suspicion in epidemic settings. Pediatric Pulmonology. 2020. onlinelibrary.wiley.com/doi/full/10.1002/ppul.24754
- 95. a. b. c. Zhu L, Wang J, Huang R, et al. Clinical characteristics of a case series of children with coronavirus disease 2019. Pediatric Pulmonology. 2020. onlinelibrary.wiley.com/doi/full/10.1002/ppul.24767
- 96. Wei M, Yuan J, Liu Y, et al. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2761659
- 97. *Hurst JH, Heston SM, Chambers HN, et al. SARS-CoV-2 Infections Among Children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) Study. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/09/01/2020.08.18.20166835
- 98. a. b. Chen C. Coronavirus Disease-19 Among Children outside Wuhan, China [Internet]. Lancet Child and Adolescent medicine. 2020. papers.ssrn.com/sol3/papers.cfm?abstract_id=3546071
- 99. a. b. c. d. e. Shen Q, Guo W, Guo T, et al. Novel coronavirus infection in children outside of Wuhan, China. Pediatric Pulmonology. 2020. onlinelibrary.wiley.com/doi/10.1002/ppul.24762
- 100. Lou XX, Shi CX, Zhou CC, Tian YS. Three children who recovered from novel coronavirus 2019 pneumonia. Journal of Paediatrics and Child Health. 2020. onlinelibrary.wiley.com/doi/10.1111/jpc.14871
- 101. Han YN, Feng ZW, Sun LN, et al. A comparative-descriptive analysis of clinical characteristics in 2019-Coronavirus-infected children and adults. Journal of Medical Virology. 2020. onlinelibrary.wiley.com/doi/10.1002/jmv.25835
- 102. Zheng F, Liao C, Fan Q-H, et al. Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Current Medical Science. 2020. link.springer.com/article/10.1007/s11596-020-2172-6
- 103. a. b. Liu W, Zhang Q, Chen J, et al. Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. The New England Journal of Medicine. 2020. www.nejm.org/doi/full/10.1056/NEJMc2003717
- 104. a. b. Su L, Ma X, Yu H, et al. The different clinical characteristics of corona virus disease cases between children and their families in China - the character of children with COVID-19. Emerging Microbes and Infections 2020; 9(1): 707-13.www.ncbi.nlm.nih.gov/pubmed/32208917
- 105. a. b. c. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatric Pulmonology 2020.onlinelibrary.wiley.com/doi/full/10.1002/ppul.24718
- 106. a. b. c. *Zhang C, Gu J, Chen Q, et al. Clinical Characteristics of 34 Children with Coronavirus Disease-2019 in the West of China: a Multiple-center Case Series. medRxiv 2020.www.medrxiv.org/content/10.1101/2020.03.12.20034686v1
- 107. a. b. c. DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in Children and Young Adults in the Washington, DC Metropolitan Region. The Journal of Pediatrics.www.jpeds.com/article/S0022-3476(20)30581-3/fulltext
- 108. Lu Y, Li Y, Deng W, et al. Symptomatic Infection is Associated with Prolonged Duration of Viral Shedding in Mild Coronavirus Disease 2019: A Retrospective Study of 110 Children in Wuhan. The Pediatric Infectious Disease Journal. 2020. journals.lww.com/pidj/Abstract/9000/Symptomatic_Infection_is_Associated_with_Prolonged.96181.aspx
- 109. Mizrahi B, Shilo S, Rossman H, et al. Longitudinal symptom dynamics of COVID-19 infection. Nature Communications. 2020. www.nature.com/articles/s41467-020-20053-y
- 110. Paret M, Lighter J, Pellett Madan R, et al. SARS-CoV-2 infection (COVID-19) in febrile infants without respiratory distress. Clinical Infectious Diseases 2020.academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa452/5821305
- 111. Valente P, Iarossi G, Federici M, et al. Ocular manifestations and viral shedding in tears of pediatric patients with coronavirus disease 2019: a preliminary report. Journal of the American Association for Pediatric Ophthalmology and Strabismus. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7282793/
- 112. Li H, Chen K, Liu M, et al. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia. Journal of Infection 2020.www.sciencedirect.com/science/article/pii/S0163445320302073?via%3Dihub
- 113. *Ulyte A, Radtke T, Abela I, et al. Variation in SARS-CoV-2 seroprevalence in school-children across districts, schools and classes. medRxiv. 2020. www.medrxiv.org/content/medrxiv/early/2020/09/18/2020.09.18.20191254
- 114. Acker KP, Schertz K, Abramson EL, et al. Infectious Diseases Diagnoses of Children Admitted With Symptoms of Coronavirus Disease 2019 During an Outbreak in New York City. Clinical Pediatrics. 2020. journals.sagepub.com/doi/abs/10.1177/0009922820944399
- 115. Galván Casas C, Català A, Carretero Hernández G, et al. Classification of the cutaneous manifestations of COVID‐19: a rapid prospective nationwide consensus study in Spain with 375 cases. British Journal of Dermatology 2020.onlinelibrary.wiley.com/doi/10.1111/bjd.19163
- 116. Genovese G, Colonna C, Marzano AV. Varicella‐like exanthem associated with COVID‐19 in an 8‐year‐old girl: A diagnostic clue? Pediatric Dermatology. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/pde.14201
- 117. Recalcati S, Barbagallo T, Frasin LA, et al. Acral cutaneous lesions in the Time of COVID‐19. Journal of the European Academy of Dermatology and Venereology. 2020. onlinelibrary.wiley.com/doi/10.1111/jdv.16533
- 118. Landa N, Mendieta-Eckert M, Fonda-Pascual P, Aguirre T. Chilblain‐like lesions on feet and hands during the COVID‐19 Pandemic. International Journal of Dermatology. 2020. onlinelibrary.wiley.com/doi/full/10.1111/ijd.14937
- 119. Piccolo V, Neri I, Filippeschi C, et al. Chilblain‐like lesions during COVID‐19 epidemic: a preliminary study on 63 patients. Journal of the European Academy of Dermatology and Venereology. 2020. onlinelibrary.wiley.com/doi/10.1111/jdv.16526
- 120. Locatelli AG, Robustelli Test E, Vezzoli P, et al. Histologic features of long lasting chilblain‐like lesions in a pediatric COVID‐19 patient. Journal of the European Academy of Dermatology and Venereology 2020.onlinelibrary.wiley.com/doi/abs/10.1111/jdv.16617?af=R
- 121. Colmenero I, Santonja C, Alonso-Riaño M, et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultraestructural study of 7 paediatric cases. British Journal of Dermatology. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/bjd.19327
- 122. Jones VG, Mills M, Suarez D, et al. COVID-19 and Kawasaki Disease: Novel Virus and Novel Case. Hospital Pediatrics. 2020. www.ncbi.nlm.nih.gov/pubmed/32265235
- 123. Cook J, Harman K, Zoica B, et al. Horizontal transmission of severe acute respiratory syndrome coronavirus 2 to a premature infant: multiple organ injury and association with markers of inflammation. The Lancet Child & Adolescent Health 2020.www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30166-8/fulltext
- 124. Pain CE, Felsenstein S, Cleary G, et al. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. The Lancet Rheumatology 2020.www.thelancet.com/journals/lanrhe/article/PIIS2665-9913(20)30137-5/fulltext
- 125. Tullie L, Ford K, Bisharat M, et al. Gastrointestinal features in children with COVID-19: an observation of varied presentation in eight children. The Lancet Child & Adolescent Health 2020.www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30165-6/fulltext
- 126. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. The Lancet 2020.www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31103-X/fulltext
- 127. a. b. Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. The Lancet 2020.www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31094-1/fulltext
- 128. Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. The British Medical Journal. 2020. www.bmj.com/content/369/bmj.m2094
- 129. Chiotos K, Bassiri H, Behrens EM, et al. Multisystem Inflammatory Syndrome in Children during the COVID-19 pandemic: a case series. Journal of the Pediatric Infectious Diseases Society 2020.academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piaa069/5848127
- 130. Deza Leon MP, Redzepi A, McGrath E, et al. COVID-19–Associated Pediatric Multisystem Inflammatory Syndrome. Journal of the Pediatric Infectious Diseases Society 2020.academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piaa061/5842067
- 131. a. b. c. d. e. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. New England Journal of Medicine. 2020. www.nejm.org/doi/full/10.1056/NEJMoa2021680
- 132. a. b. Dufort EM, Koumans EH, Chow EJ, et al. Multisystem Inflammatory Syndrome in Children in New York State. New England Journal of Medicine. 2020. www.nejm.org/doi/full/10.1056/NEJMoa2021756
- 133. Riollano-Cruz M, Akkoyun E, Briceno-Brito E, et al. Multisystem Inflammatory Syndrome in Children (MIS-C) Related to COVID-19: A New York City Experience. Journal of Medical Virology. 2020. onlinelibrary.wiley.com/doi/abs/10.1002/jmv.26224
- 134. Oberweis ML, Codreanu A, Boehm W, et al. Pediatric Life-Threatening Coronavirus Disease 2019 With Myocarditis. The Pediatric Infectious Disease Journal. 2020. journals.lww.com/pidj/Abstract/9000/Pediatric_Life_Threatening_Coronavirus_Disease.96160.aspx
- 135. Belhadjer Z, Méot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020. www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.048360
- 136. Grimaud M, Starck J, Levy M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Annals of Intensive Care 2020; 10(1): 69.annalsofintensivecare.springeropen.com/articles/10.1186/s13613-020-00690-8
- 137. Miller J, Cantor A, Zachariah P, et al. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children (MIS-C) that is related to COVID-19: a single center experience of 44 cases. Gastroenterology. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7270806/
- 138. a. b. c. d. Moraleda C, Serna-Pascual M, Soriano-Arandes A, et al. Multi-Inflammatory Syndrome in Children related to SARS-CoV-2 in Spain. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1042/5876334
- 139. Pouletty M, Borocco C, Ouldali N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Annals of the Rheumatic Diseases. 2020. ard.bmj.com/content/early/2020/06/25/annrheumdis-2020-217960
- 140. García-Salido A, de Carlos Vicente JC, Belda Hofheinz S, et al. Severe manifestations of SARS-CoV-2 in children and adolescents: from COVID-19 pneumonia to multisystem inflammatory syndrome: a multicentre study in pediatric intensive care units in Spain. Critical Care. 2020. ccforum.biomedcentral.com/articles/10.1186/s13054-020-03332-4
- 141. Blondiaux E, Parisot P, Redheuil A, et al. Cardiac MRI of Children with Multisystem Inflammatory Syndrome (MIS-C) Associated with COVID-19: Case Series. Radiology. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7294821/
- 142. Cheung EW, Zachariah P, Gorelik M, et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2767207
- 143. Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children. JAMA Neurology. 2020. jamanetwork.com/journals/jamaneurology/fullarticle/2767979
- 144. European Centre for Disease Prevention and Control. Paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children – 15 May 2020. ECDC: Stockholm. 2020. www.ecdc.europa.eu/en/publications-data/paediatric-inflammatory-multisystem-syndrome-and-sars-cov-2-rapid-risk-assessment
- 145. a. b. c. Davies P, Evans C, Kanthimathinathan HK, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. The Lancet Child & Adolescent Health. 2020. www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30215-7/fulltext
- 146. To KK, Chua GT, Kwok KL, et al. False-positive SARS-CoV-2 serology in 3 children with Kawasaki disease. Diagnostic Microbiology and Infectious Disease. 2020. www.sciencedirect.com/science/article/pii/S0732889320305186
- 147. Belot A, Antona D, Renolleau S, et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Eurosurveillance. 2020. www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.22.2001010
- 148. Ouldali N, Pouletty M, Mariani P, et al. Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis. The Lancet Child & Adolescent Health. 2020. linkinghub.elsevier.com/retrieve/pii/S2352464220301759
- 149. Carter MJ, Fish M, Jennings A, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nature Medicine. 2020. www.nature.com/articles/s41591-020-1054-6
- 150. Godfred-Cato S, Bryant B, Leung J, et al. COVID-19–Associated Multisystem Inflammatory Syndrome in Children — United States, March–July 2020. Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6932e2.htm?s_cid=mm6932e2_w
- 151. Prieto LM, Toral B, Llorente A, et al. Cardiovascular magnetic resonance imaging in children with pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 and heart dysfunction. Clinical Microbiology and Infection. 2020. www.clinicalmicrobiologyandinfection.com/article/S1198-743X(20)30616-9/fulltext
- 152. Harman K, Verma A, Cook J, et al. Ethnicity and COVID-19 in children with comorbidities. The Lancet Child & Adolescent Health. 2020. www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30167-X/fulltext
- 153. Lee EH, Kepler KL, Geevarughese A, et al. Race/Ethnicity Among Children With COVID-19–Associated Multisystem Inflammatory Syndrome. JAMA Network Open. 2020. jamanetwork.com/journals/jamanetworkopen/fullarticle/2773289
- 154. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 2020; 395(10223): 514-23.www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30154-9/fulltext
- 155. a. b. Dong Y, Mo X, Hu Y, et al. Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China. Pediatrics 2020.pediatrics.aappublications.org/content/pediatrics/early/2020/03/16/peds.2020-0702.full.pdf
- 156. Sola AM, David AP, Rosbe KW, et al. Prevalence of SARS-CoV-2 Infection in Children Without Symptoms of Coronavirus Disease 2019. JAMA Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2769878
- 157. Liu X, Tang J, Xie R, et al. Clinical and Epidemiological Features of 46 Children <1 Year Old With Coronavirus Disease 2019 in Wuhan, China: A Descriptive Study. The Journal of Infectious Diseases. 2020. academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa472/5881823
- 158. a. b. Chen J, Zhang ZZ, Chen YK, et al. The clinical and immunological features of pediatric COVID-19 patients in China. Genes & Diseases 2020.www.sciencedirect.com/science/article/pii/S2352304220300507
- 159. a. b. Liu H, Liu F, Li J, et al. Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. Journal of Infection 2020.www.journalofinfection.com/article/S0163-4453(20)30118-3/fulltext
- 160. *Xing Y, Ni W, Wu Q, et al. Prolonged presence of SARS-CoV-2 in feces of pediatric patients during the convalescent phase. medRxiv 2020.www.medrxiv.org/content/10.1101/2020.03.11.20033159v1
- 161. Chen D, Li Y, Deng X, et al. Four cases from a family cluster were diagnosed as COVID-19 after 14-day of quarantine period. Journal of Medical Virology. 2020. onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25849
- 162. Feng K, Yun YX et al. Analysis of CT features of 15 children with 2019 novel coronavirus. Chinese Journal of Paediatrics. 2020. rs.yiigle.com/yufabiao/1181979.htm
- 163. Li W, Cui H, Li K, Fang Y, Li S. Chest computed tomography in children with COVID-19 respiratory infection. Pediatric Radiology. 2020. link.springer.com/article/10.1007/s00247-020-04656-7
- 164. de Ceano-Vivas M, Martín-Espín I, del Rosal T, et al. SARS-CoV-2 infection in ambulatory and hospitalised Spanish children. Archives of Disease in Childhood. 2020. adc.bmj.com/content/early/2020/05/22/archdischild-2020-319366
- 165. a. b. Caro-Dominguez P, Shelmerdine SC, Toso S, et al. Thoracic imaging of coronavirus disease 2019 (COVID-19) in children: a series of 91 cases. Pediatric Radiology. 2020. link.springer.com/article/10.1007/s00247-020-04747-5
- 166. Oterino Serrano C, Alonso E, Andrés M, et al. Pediatric chest x-ray in covid-19 infection. European Journal of Radiology. 2020. www.sciencedirect.com/science/article/pii/S0720048X20304253
- 167. Oved K, Olmer L, Shemer-Avni Y, et al. Multi-center nationwide comparison of seven serology assays reveals a SARS-CoV-2 non-responding seronegative subpopulation. EClinicalMedicine. 2020. linkinghub.elsevier.com/retrieve/pii/S2589537020303953
- 168. *Wikramaratna P, Paton RS, Ghafari M, Lourenco J. Estimating false-negative detection rate of SARS-CoV-2 by RT-PCR. medRxiv. 2020. www.medrxiv.org/content/10.1101/2020.04.05.20053355v2
- 169. Issitt R, Booth J, Bryant W, et al. Coronavirus (COVID-19) infection in children at a specialist centre: outcome and implications of underlying high-risk comorbidities in a paediatric population. medRxiv. 2020. www.medrxiv.org/content/10.1101/2020.05.20.20107904v1
- 170. Tsankov BK, Allaire JM, Irvine MA, et al. Severe COVID-19 Infection and Pediatric Comorbidities: A Systematic Review and Meta-Analysis. International Journal of Infectious Diseases. 2020. www.ijidonline.com/article/S1201-9712(20)32475-9/fulltext
- 171. D'Antiga L. Coronaviruses and immunosuppressed patients. The facts during the third epidemic. Liver Transplantation. 2020. aasldpubs.onlinelibrary.wiley.com/doi/10.1002/lt.25756
- 172. a. b. Balduzzi A, Brivio E, Rovelli A, et al. Lessons After the Early Management of the COVID-19 Outbreak in a Pediatric Transplant and Hemato-Oncology Center Embedded within a COVID-19 Dedicated Hospital in Lombardia, Italy. Estote Parati. 2020. papers.ssrn.com/sol3/papers.cfm?abstract_id=3559560
- 173. a. b. c. Turner D, Huang Y, Martín-de-Carpi J, et al. COVID-19 and Paediatric Inflammatory Bowel Diseases: Global Experience and Provisional Guidance (March 2020) from the Paediatric IBD Porto group of ESPGHAN. Journal of Pediatric Gastroenterology and Nutrition 2020.www.ncbi.nlm.nih.gov/pubmed/32235161
- 174. Hrusak O, Kalina T, Wolf J, et al. Flash survey on severe acute respiratory syndrome coronavirus-2 infections in paediatric patients on anticancer treatment. European Journal of Cancer. 2020. www.ejcancer.com/article/S0959-8049(20)30162-3/fulltext
- 175. Sieni E, Pegoraro F, Casini T, et al. Favourable outcome of Coronavirus‐19 in a 1‐year‐old girl with acute myeloid leukaemia and severe treatment‐induced immunosuppression. British Journal of Haematology. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/bjh.16781
- 176. Morand A, Roquelaure B, Colson P, et al. Child with liver transplant recovers from COVID-19 infection. A case report. Archives de Pédiatrie 2020.www.sciencedirect.com/science/article/pii/S0929693X2030110X
- 177. Ferrari A, Zecca M, Rizzari C, et al. Children with cancer in the time of COVID-19: An 8-week report from the six pediatric onco-hematology centers in Lombardia, Italy. Pediatric Blood & Cancer. 2020. onlinelibrary.wiley.com/doi/full/10.1002/pbc.28410
- 178. Gampel B, Troullioud Lucas AG, Broglie L, et al. COVID-19 disease in New York City pediatric hematology and oncology patients. Pediatric Blood & Cancer. 2020. onlinelibrary.wiley.com/doi/abs/10.1002/pbc.28420
- 179. Freeman MC, Rapsinski GJ, Zilla ML, et al. Immunocompromised Seroprevalence and Course of Illness of SARS-CoV-2 in One Pediatric Quaternary Care Center. Journal of the Pediatric Infectious Diseases Society. 2020. academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piaa123/5922694
- 180. Goss MB, Galván NTN, Ruan W, et al. The pediatric solid organ transplant experience with COVID-19: An initial multi-center, multi-organ case series. Pediatric Transplantation. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/petr.13868
- 181. Schwierzeck V, Konig JC, Kuhn J, et al. First reported nosocomial outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a pediatric dialysis unit. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa491/5825509
- 182. Poli P, Timpano S, Goffredo M, et al. Asymptomatic case of Covid-19 in an infant with cystic fibrosis. Journal of Cystic Fibrosis. 2020. www.cysticfibrosisjournal.com/article/S1569-1993(20)30096-5/fulltext
- 183. Odièvre MH, de Marcellus C, Ducou Le Pointe H, et al. Dramatic improvement after Tocilizumab of a severe COVID‐19 in a child with sickle cell disease and acute chest syndrome. American Journal of Hematology 2020.onlinelibrary.wiley.com/doi/abs/10.1002/ajh.25855?af=R
- 184. Kabesch M. Shielding against SARS-CoV-2 infection is not justified in children with severe asthma. Pediatric Allergy and Immunology. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/pai.13327
- 185. Kainth MK, Goenka PK, Williamson KA, et al. Early Experience of COVID-19 in a US Children' Hospital. Pediatrics. 2020. pediatrics.aappublications.org/content/pediatrics/early/2020/07/15/peds.2020-003186
- 186. Gaborieau L, Delestrain C, Bensaid P, et al. Epidemiology and Clinical Presentation of Children Hospitalized with SARS-CoV-2 Infection in Suburbs of Paris. Journal of Clinical Medicine. 2020. www.mdpi.com/2077-0383/9/7/2227
- 187. Kim L, Whitaker M, O’Halloran A, et al. Hospitalization Rates and Characteristics of Children Aged <18 Years Hospitalized with Laboratory-Confirmed COVID-19 — COVID-NET, 14 States, March 1–July 25, 2020. Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6932e3.htm
- 188. Bixler D, Miller A, Mattison C, et al. SARS-CoV-2–Associated Deaths Among Persons Aged <21 Years — United States, February 12–July 31, 2020. MMWR Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6937e4.htm?s_cid=mm6937e4_w
- 189. Oualha M, Bendavid M, Berteloot L, et al. Severe and fatal forms of COVID-19 in children. Archives de Pédiatrie. 2020. www.sciencedirect.com/science/article/pii/S0929693X20301172
- 190. a. b. Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. Jama Pediatrics. 2020. jamanetwork.com/journals/jamapediatrics/fullarticle/2766037
- 191. Prata-Barbosa A, Lima-Setta F, Santos GR, et al. Pediatric patients with COVID-19 admitted to intensive care units in Brazil: a prospective multicenter study. Jornal de Pediatria. 2020. www.sciencedirect.com/science/article/pii/S0021755720301923
- 192. Lanyon N, du Pré P, Thiruchelvam T, et al. Critical paediatric COVID-19: varied presentations but good outcomes. Archives of Disease in Childhood. 2020. adc.bmj.com/content/early/2020/06/28/archdischild-2020-319602
- 193. Derespina KR, Kaushik S, Plichta A, et al. Clinical Manifestations and Outcomes of Critically Ill Children and Adolescents with COVID-19 in New York City. The Journal of Pediatrics. 2020. www.jpeds.com/article/S0022-3476(20)30888-X/fulltext
- 194. Xiong X, Chua GT, Chi S, et al. A Comparison Between Chinese Children Infected with Coronavirus Disease-2019 and with Severe Acute Respiratory Syndrome 2003. The Journal of Pediatrics. 2020. www.jpeds.com/article/S0022-3476(20)30743-5/fulltext
- 195. Lorenz N, Treptow A, Schmidt S, et al. Neonatal Early-Onset Infection With SARS-CoV-2 in a Newborn Presenting With Encephalitic Symptoms. The Pediatric Infectious Disease Journal. 2020. journals.lww.com/pidj/Citation/9000/Neonatal_Early_Onset_Infection_With_SARS_CoV_2_in.96175.aspx
- 196. White A, Mukherjee P, Stremming J, et al. Neonates Hospitalized with Community-Acquired SARS-CoV-2 in a Colorado Neonatal Intensive Care Unit. Neonatology. 2020. www.karger.com/Article/Abstract/508962
- 197. Fan C, Lei D, Fang C, et al. Perinatal Transmission of COVID-19 Associated SARS-CoV-2: Should We Worry? Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa226/5809260
- 198. a. b. Zhang ZJ, Yu XJ, Fu T, et al. Novel Coronavirus Infection in Newborn Babies Under 28 Days in China. European Respiratory Journal. 2020. erj.ersjournals.com/content/early/2020/04/01/13993003.00697-2020
- 199. a. b. Wang S, Guo L, Chen L, et al. A case report of neonatal COVID-19 infection in China. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa225/5803274
- 200. Wardell H, Campbell JI, VanderPluym C, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Febrile Neonates. Journal of the Pediatric Infectious Diseases Society. 2020. academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piaa084/5869489
- 201. Flaherman V, Afshar Y, Boscardin J, et al. Infant Outcomes Following Maternal Infection with SARS-CoV-2: First Report from the PRIORITY Study. Clinical Infectious Diseases. 2020. academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1411/5908705
- 202. a. b. Knight M, Bunch K, Vousden N, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. British Medical Journal. 2020. www.bmj.com/content/369/bmj.m2107
- 203. Yan J, Guo J, Fan C, et al. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. American Journal of Obstetrics & Gynecology. 2020. www.ajog.org/article/S0002-9378(20)30462-2/fulltext
- 204. a. b. Diriba K, Awulachew E, Getu E. The effect of coronavirus infection (SARS-CoV-2, MERS-CoV, and SARS-CoV) during pregnancy and the possibility of vertical maternal–fetal transmission: a systematic review and meta-analysis. European Journal of Medical Research. 2020. eurjmedres.biomedcentral.com/articles/10.1186/s40001-020-00439-w
- 205. Ferrazzi E, Frigerio L, Savasi V, et al. Vaginal delivery in SARS‐CoV‐2 infected pregnant women in Northern Italy: a retrospective analysis. BJOG: An International Journal of Obstetrics & Gynaecology 2020.obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.16278
- 206. Woodworth KR, Olsen EO, Neelam V, et al. Birth and Infant Outcomes Following Laboratory-Confirmed SARS-CoV-2 Infection in Pregnancy — SET-NET, 16 Jurisdictions, March 29–October 14, 2020. Morbidity and Mortality Weekly Report. 2020. www.cdc.gov/mmwr/volumes/69/wr/mm6944e2.htm?s_cid=mm6944e2_w
- 207. Breslin N, Baptiste C, Miller R, et al. COVID-19 in pregnancy: early lessons. American Journal of Obstetrics & Gynecology 2020. www.sciencedirect.com/science/article/pii/S2589933320300410
- 208. Li N, Han L, Peng M, et al. Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study. Clinical Infectious Diseases. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7184430/
- 209. Wang X, Zhou Z, Zhang J, Zhu F, Tang Y, Shen X. A case of 2019 Novel Coronavirus in a pregnant woman with preterm delivery. Clinical Infectious Diseases. 2020. academic.oup.com/cid/article/doi/10.1093/cid/ciaa200/5771323
- 210. Kalafat E, Yaprak E, Cinar G, et al. Lung ultrasound and computed tomographic findings in pregnant woman with COVID-19. Ultrasound in Obstetrics & Gynecology. 2020. obgyn.onlinelibrary.wiley.com/doi/abs/10.1002/uog.22034
- 211. Iqbal SN, Overcash R, Mokhtari N, et al. An Uncomplicated Delivery in a Patient with Covid-19 in the United States. The New England Journal of Medicine. 2020. www.nejm.org/doi/full/10.1056/NEJMc2007605
- 212. Lee DH, Lee J, Kim E, Woo K, Park HY, An J. Emergency cesarean section on severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) confirmed patient. Korean Journal of Anesthesiology. 2020. ekja.org/journal/view.php?doi=10.4097/kja.20116
- 213. Liu Y, Chen H, Tang K, Guo Y. Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. Journal of Infection. 2020. www.journalofinfection.com/article/S0163-4453(20)30109-2/fulltext
- 214. Li Y, Zhao R, Zheng S, et al. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerging Infectious Diseases. 2020. wwwnc.cdc.gov/eid/article/26/6/20-0287_article
- 215. Liu D, Li L, Wu X, et al. Pregnancy and Perinatal Outcomes of Women With Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Analysis. American Journal of Roentgenology. 2020. www.ajronline.org/doi/full/10.2214/AJR.20.23072
- 216. Chen S, Liao E, Shao Y. Clinical analysis of pregnant women with 2019 novel coronavirus pneumonia. Journal of Medical Virology. 2020. onlinelibrary.wiley.com/doi/full/10.1002/jmv.25789
- 217. Zambrano LI, Fuentes-Barahona IC, Bejarano-Torres DA, et al. A pregnant woman with COVID-19 in Central America. Travel Medicine and Infectious Disease. 2020. www.sciencedirect.com/science/article/pii/S1477893920301071?via%3Dihub
- 218. Chen Y, Peng H, Wang L, et al. Infants Born to Mothers With a New Coronavirus (COVID-19). Frontiers in Pediatrics. 2020. www.frontiersin.org/articles/10.3389/fped.2020.00104/full
- 219. a. b. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020. www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30360-3/fulltext
- 220. Liu W, Wang J, Li W, et al. Clinical characteristics of 19 neonates born to mothers with COVID-19. Frontiers of Medicine. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7152620/
- 221. Buonsenso D, Costa S, Sanguinetti M, et al. Neonatal Late Onset Infection with Severe Acute Respiratory Syndrome Coronavirus 2. American Journal of Perinatology 2020.www.ncbi.nlm.nih.gov/pubmed/32359227
- 222. Perlman J, Oxford C, Chang C, et al. Delivery Room Preparedness and Early Neonatal Outcomes During COVID19 Pandemic in New York City. Pediatrics 2020.pediatrics.aappublications.org/content/early/2020/05/12/peds.2020-1567.long
- 223. Kotlyar A, Grechukhina O, Chen A, et al. Vertical Transmission of COVID-19: A Systematic Review and Meta-analysis. American Journal of Obstetrics and Gynecology. 2020. www.ajog.org/article/S0002-9378(20)30823-1/fulltext
- 224. Hecht JL, Quade B, Deshpande V, et al. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Modern Pathology. 2020. www.nature.com/articles/s41379-020-0639-4
- 225. Fenizia C, Biasin M, Cetin I, et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nature Communications. 2020. www.nature.com/articles/s41467-020-18933-4
- 226. Dong L, Tian J, Songming H et al. Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2763853
- 227. Zeng H, Xu C, Fan J, et al. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2763854
- 228. McDevitt KEM, Ganjoo N, Mlangeni D, et al. Outcome of universal screening of neonates for COVID-19 from asymptomatic mothers. The Journal of infection. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7303651/
- 229. Marín Gabriel MA, Reyne Vergeli M, Caserío Carbonero S, et al. Maternal, Perinatal and Neonatal Outcomes With COVID-19: A Multicenter Study of 242 Pregnancies and Their 248 Infant Newborns During Their First Month of Life. Pediatric Infectious Disease. 2020. pubmed.ncbi.nlm.nih.gov/32947599/
- 230. Alzamora MC, Paredes T, Caceres D, et al. Severe COVID-19 during Pregnancy and Possible Vertical Transmission. America Journal of Perinatology. 2020. www.ncbi.nlm.nih.gov/pubmed/32305046
- 231. Gao J, Li W, Hu X, et al. Disappearance of SARS-CoV-2 Antibodies in Infants Born to Women with COVID-19, Wuhan, China. Emerging Infectious Disease Journal. 2020. wwwnc.cdc.gov/eid/article/26/10/20-2328_article
- 232. Kalamdani P, Kalathingal T, Manerkar S, et al. Clinical Profile of SARS-CoV-2 Infected Neonates From a Tertiary Government Hospital in Mumbai, India. Indian Journal of Pediatrics. 2020. pubmed.ncbi.nlm.nih.gov/33043888/
- 233. Gidlof S, Savchenko J, Brune T, Josefsson H. COVID-19 in pregnancy with comorbidities: More liberal testing strategy is needed. Acta Obstetricia et Gynecologica Scandinavica. 2020. obgyn.onlinelibrary.wiley.com/doi/full/10.1111/aogs.13862
- 234. Salvatori G, De Rose DU, Concato C, et al. Managing COVID-19-Positive Maternal-Infant Dyads: An Italian Experience. Breastfeeding Medicine. 2020. www.ncbi.nlm.nih.gov/pubmed/32311273
- 235. Costa S, Posteraro B, Marchetti S, et al. Excretion of SARS-CoV-2 in human breast milk. Clinical Microbiology and Infection. 2020. www.ncbi.nlm.nih.gov/pmc/articles/PMC7266588/
- 236. Groß R, Conzelmann C, Müller JA, et al. Detection of SARS-CoV-2 in human breastmilk. The Lancet.www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31181-8/fulltext#articleInformation
- 237. Chambers CD, Krogstad P, Bertrand K, et al. Evaluation of SARS-CoV-2 in Breastmilk from 18 Infected Women. JAMA. 2020. jamanetwork.com/journals/jama/fullarticle/2769825
- 238. Demers-Mathieu V, Dung M, Mathijssen GB, et al. Difference in levels of SARS-CoV-2 S1 and S2 subunits- and nucleocapsid protein-reactive SIgM/IgM, IgG and SIgA/IgA antibodies in human milk. Journal of Perinatology. 2020. www.nature.com/articles/s41372-020-00805-w
- 239. Nathan N, Prevost B, Corvol H. Atypical presentation of COVID-19 in young infants. The Lancet 2020; 395(10235): 1481.www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30980-6/fulltext#articleInformation
- 240. Wang D, Ju X, Xie F, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China. Chinese Journal of Pediatrics 2020; 58(4): E011.rs.yiigle.com/yufabiao/1183296.htm
- 241. Ludvigsson JF. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatrica. 2020. onlinelibrary.wiley.com/doi/abs/10.1111/apa.15673
- 242. Lazzerini M, Barbi E, Apicella A, et al. Delayed access or provision of care in Italy resulting from fear of COVID-19. The Lancet Child & Adolescent Health. 2020. www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30108-5/fulltext
- 243. Lynn RM, Avis JL, Lenton S, et al. Delayed access to care and late presentations in children during the COVID-19 pandemic: a snapshot survey of 4075 paediatricians in the UK and Ireland. Archives of Disease in Childhood. 2020. adc.bmj.com/content/early/2020/06/24/archdischild-2020-319848
- 244. Roland D, Harwood R, Bishop N, et al. Children's emergency presentations during the COVID-19 pandemic. The Lancet Child & Adolescent Health. 2020. www.thelancet.com/journals/lanchi/article/PIIS2352-4642(20)30206-6/fulltext